
Solving Planted Motif Problem Using Modeling Method

S. Desarjau and R. Mukkamala
Computer Science Department, Old Dominion University, Norfolk, Virginia, USA

Abstract - In this paper we describe a new method for solving
the Planted Motif Problem that has applications in
computational biology. A number of algorithms to solve this
problem have been proposed in the past. The largest problem
reported solved in the literature is (21, 8). Using the new
method we have solved much larger problems, up to a size of
(48, 12). The new method is also much faster, and we compare
its performance with the best performances reported in the
literature.

Keywords: Elmers, heuristics, memory-constrained
computing, modeling, motif, planted motif problem

1 Introduction
 The Planted Motif Problem (PMP) may be abstractly
defined as: “Given a set of n strings, each of length L, over an
alphabet Σ, find a string M of length l < L over Σ, such that
there is at least one d-neighbor of M in each of the n strings,
where a d-neighbor is a string of length l that differs from M
in at most d positions and M is the motif for the given set of
n strings.”
 PMP has applications in molecular biology. Identifying
subtle signals in the transcription-factor binding sites of
several genes is the primary application of PMP. Finding such
regulatory patterns among DNA sequences aids the study of
gene regulatory networks [1]. The alphabet of the Planted
Motif Problem is usually {A, C, G, T}, corresponding to the
four nucleotide bases that constitute DNA. In principle,
however, the problem can be posed for strings over any finite
alphabet.
 The Planted Motif Problem can be posed for different
values of ‘l’ and ‘d’. Larger values of ‘l’ and ‘d’ constitute
larger problems, and typically take more time and/or memory
to solve. The pair (l, d) is used to express the size of a given
problem. Most researchers keep ‘n’ and ‘L’ fixed at 20 and
600, respectively [2].
 Several methods currently exist to solve the PMP. These
are: PMS1 [3]; Pattern Branching [4]; WINNOWER [2];
MITRA [5]; Random Projection [6]; Bit-based Multi-core [7];
ExVote [8], Stemming [9], PMSPrune [10], RISOTTO [11],
and algorithms for solving the Extended Motif Problem
(EMP) [1] [12].
 We summarize some of these methods below. All these
methods have limitations in the size of the problems that they
solve and the running time that they require.
 In contrast to these existing algorithms, we approach the
motif-finding problem with a method of deriving the motif
from clues present in the input strings. If there is a motif of
length l present for a given set of input strings, the length l

substrings of the input exhibit certain simple properties. We
identify these properties and use them to construct the motif.
The method has been used to solve problem sizes much larger
than those reported solved in the literature, in times much
shorter than the times reported for smaller problems in the
literature. The method also holds promise for problems of
larger alphabet size than the DNA alphabet size of 4.
 The rest of the paper is organized as follows. In section 2,
we illustrate the problem and summarize previous work in the
area. Section 3 describes ‘modeling’ and the discovered
properties as a set of propositions. Section 4 presents a formal
algorithm and analysis of the computational complexity. In
Section 5 we provide an overview of the statistical properties
of the factors involved in the computation. In section 6, we
present the results that show the superiority of the proposed
method in terms of ability to solve larger problems with
smaller run times. We also state the notable shortcomings of
the method. Finally, Section 7 summarizes our contributions
and discusses future work.

2 Problem Illustration and Previous work
 The Planted Motif Problem has been an area of active
research for about the last twenty years, and a number of
different approaches have been described.
 Before we describe the previous work, let us look at an
example to illustrate the problem. Consider a set of 3 DNA
sequences, each of length 32. The problem is to find a string
(motif) of length 6, for which a 2-neighbor exists in each of
the 3 sequences. Here, n=3, L=32, l=6, d=2, and ∑={A, C, G,
T}. The size of the problem is (6, 2).

0 GTCAGACAGATCGTGTTCTATACGACGACTTC
1 CTATGACCAAGGGATTTCTAACCACGGCACTT
2 ATCAGTCCCAGGGTGTTCCGCTCGACGTGTTC

 For this problem, there exists a motif – GGCTCG. The
sub-sequences of length 6 that are in bold face are d-neighbors
of the motif. The first substring AGATCG differs from the
motif at the 1st and 3rd positions. The 2nd substring GGCACT
differs from the motif at the 4th and 6th positions. The third
substring CGCTCG differs at only the 1st position. So
GGCTCG is one of the solutions. There could be more than
one motif. But the problem statement calls for finding any one
such string.
 It is important to note that the motif itself may not literally
occur in any of the input sequences. All that is required is that
a d-neighbor of the motif occurs in each of the input
sequences.

 We now summarize previous efforts to solve this problem.
WINNOWER [2] takes a graph-based approach to solve the
problem. It finds cliques in a graph constructed by
representing each length l substring of the input as a node.
Thus the number of nodes will be n*(L-l+1). WINNOWER is
effective up to problem sizes of (18, 5) and requires
substantial computational resources (both time and memory).
 MITRA [5] is based on a trie (or prefix tree) traversal
algorithm. A mismatch tree data structure is used, in which all
the possible patterns are segregated into disjoint subsets, with
each subset starting with a given prefix. It is effective up to
problem sizes of (18, 6), taking 40 minutes and 650 MB of
memory.
 PatternBranching [4] starts with a random seed string and
searches for the length l neighbors of this string in the input. It
scores the neighbors with an appropriate scoring function and
selects the best scoring neighbor.
 The Random Projection Algorithm [6] finds motifs using
random projections. For each length l substring of the input, a
length k string is constructed as a subsequence of the original
substring, sharing k random positions (i.e., it is a random
projection). All the length l substrings are hashed using the
length k string of any length l substring as the hash value. If a
hashed group has at least a threshold number of substrings in
it, then it is likely that the motif will have its length k
projection equal to the length k projection of this group. The
largest problem the method is reported to have solved is
(18,6), in about one hour.
 The PMS1 algorithm [3] is based on exhaustive
enumeration. The Bit-based algorithm [7] is also based on
exhaustive enumeration, and is a multicore (i.e. parallel
processing) implementation, with modifications to address
memory-sharing issues and enhance performance. The largest
problem the method is reported to have solved is (21, 8), in
7.8 hours, using 16 CPU cores [6].

3 Proposed Method
Our method is based on a process that we call modeling. If
any sequence of length l on the alphabet ∑ is an ‘l-mer’, and if
the number of positions at which any two l-mers differ is the
‘distance’ between them, then given two l-mers l1 and l2 that
are at a distance of 2d from each other, we can construct
another l-mer lm that is at a distance d from both l1 and l2 as
follows:

(i) Note the points at which l1 differs from l2 (there are
2d such points)

(ii) To obtain lm, choose any d points in l1 out of the 2d
points of difference with l2, and replace them with
the corresponding letters in l2.

 For example, consider two l-mers l1= AGATCG and l2 =
GGCACT. They differ in four positions (bold faced). We can
obtain lm by replacing the letters at any two of these four
positions in l1, say the 1st and 3rd positions, by the
corresponding letter in l2, thus forming lm=GGCTCG. This
differs from both l1and l2 at two positions.

 We define the process of finding lm by replacing d letters in
l1 with the corresponding letters of l2 as modeling – l1 is
modeled on l2, and l2 is a model for l1.
 Based on the above definition, we make the following
propositions. Note beforehand that for an input having n
sequences of length L, there are L – l + 1 number of l-mers in
each of the n input sequences, and the input sequences are
numbered from 0 to n – 1.
Proposition 1: If there exists a motif of length l for the given
n sequences, then in each sequence, at least one l-mer of
length l is a d-neighbor of the motif. In particular, one of the L
– l + 1 number of l-mers in sequence 0 is a d-neighbor of the
motif.
 Proposition 2: If there exists a motif of length l for the given
n sequences, then the d-neighbor in every sequence from
sequences 1 to n – 1 is at a distance of at most 2d from the d-
neighbor in sequence 0.
Proposition 3: If there exists a motif of length l for the given
n sequences, then the motif can be found by modeling the d-
neighbor in sequence 0, on any d-neighbor in sequences 1 to n
– 1 that is at a distance exactly 2d from it.
 The logic of Proposition 3 is described as follows:
 If two d-neighbors of the motif, dn0 and dn1, are at a
distance of exactly 2d from each other, then they are identical
to each other at exactly l – 2d points. If dn0 and dn1 are
identical to each other at exactly l – 2d points, the motif
consists of the identical l – 2d points. This follows necessarily
from the definition of ‘d-neighbor’ (or, what is the same, from
the definition of ‘motif’).
 Therefore, given two d-neighbors of the motif that are at a
distance of exactly 2d from each other, l – 2d points of the
motif are readily identified. The task is to identify the
remaining 2d points of the motif.
 The key is that these points are supplied by dn0 and dn1
themselves. The remaining 2d points in the motif are the same
2d points at which dn0 and dn1 differ. At each of the 2d points,
the symbol in the motif is identical to the symbol at that point
in either dn0 or dn1. Further, the motif is identical to dn0 at d
of the 2d points, and to dn1 at the remaining d of the 2d points.
Again, this follows necessarily from the definition of d-
neighbor.
 So the task becomes one of constructing the motif by
choosing d points from dn0 out of its 2d points of difference
with dn1, and choosing d points from dn1 out of its 2d points
of difference with dn0, and inserting the chosen 2d points into
the corresponding 2d points in the motif.
 We use modeling to achieve this effect. We take dn0 and
model it on dn1 at d points out of the 2d points of difference.
As there are (2d

d) ways in which d points can be chosen out of
2d points, there are (

 As it is not known a priori which l-mer in sequence 0 is a
d-neighbor of the motif, it is required to choose each l-mer
one-by-one for processing. Similarly, as it is not known a
priori which l-mers in sequences 1 to n – 1 are d-neighbors of
the motif, all the l-mers in sequences 1 to n – 1 that are at a

2d
d) ways in which dn0 can be modeled

on dn1. The motif can be found by taking each variant of dn0
by turns, and testing to see if it is the motif.

distance of exactly 2d from the chosen l-mer in sequence 0,
have to be found and considered as models.
 When the d-neighbor of the motif in sequence 0 comes up
for processing, all the d-neighbors of the motif in sequences 1
to n – 1 that are at a distance of exactly 2d from it will be
found, during the search for all the l-mers that are at a distance
of exactly 2d from it (along with other l-mers that happen to
satisfy the property). Thereby sooner or later the d-neighbor in
sequence 0 will be modeled on a d-neighbor of the motif that
is at a distance of exactly 2d from it, and the motif will be
found.
 Accordingly, we construct the following method,
consisting of twelve steps numbered 1 thru 12, to find the
motif:
Step 1: Take the first l-mer of length l in sequence 0; call this
the ‘root’.
Step 2: Check whether the root is the motif by finding its
distance from all the l-mers in sequences 1 to n – 1.
Step 3: If the root is within distance d of at least one l-mer in
each of the sequences 1 to n – 1, then the root is the required
motif. Return the root. Otherwise, continue with the next step.
Step 4: For the root, find all the 2d-neighbors in sequences 1
to n – 1. Call them the ‘candidates’.
Step 5: From the set of candidates, take the first candidate
that is at a distance of exactly 2d from the root. Call it the
‘model-candidate’. If no such model-candidate exists, repeat
the steps from Step 1, taking as the root the next l-mer in
sequence 0.
Step 6: Model the root on the model-candidate. There are (2d

d)
possible combinations for modeling the root on the model-
candidate. Take the first of the (

Step 7: Check the distance of the modeled root from all the
candidates (i.e., all the 2d-neighbors of the root.)

2d
d) possible combinations,

and model the root according to it.

Step 8: If the modeled root is within distance d of at least one
candidate from each of the input sequences, it is the required
motif. Return the modeled root. Otherwise, continue with the
next step.
Step 9: Repeat Step 6 by taking the next of the possible (2d

d)
combinations and repeat Step 7. If all the (

Step 10: If all the candidates found in Step 4 are exhausted
and the motif is not found, repeat the steps from Step 1, taking
as the root the next l-mer in sequence 0.

2d
d) combinations

are exhausted and the motif is not found, repeat the steps from
Step 5, by taking as the model-candidate the next candidate
that is at a distance of exactly 2d from the root.

Step 11: If all the l-mers in sequence 0 are exhausted and the
motif is not found, relocate sequence 0 to the bottom of the
input, such that it becomes sequence n – 1 and all the other
sequences are promoted in the order by one step. In particular,
sequence 1 becomes the new sequence 0. Then repeat the
entire process from Step 1, with the new sequence 0.
Step 12. If n – 1 input sequences have been promoted to
sequence 0 and the motif is not found, then stop and return an
exception.
Explanation of Step 11: If all the l-mers in sequence 0 are
exhausted and the motif is not found (but assumed to exist), it
means that either:

(i) the d-neighbor of the motif in sequence 0 is not at a
distance of exactly d from the motif, or

(ii) no d-neighbor is found in sequences 1 to n – 1 that is
at a distance of exactly 2d from the d-neighbor in
sequence 0

 In either case, the fundamental requirement of the method,
given under Proposition 3, is not met. Hence the method starts
over with a different input sequence taken as sequence 0.
 It should be noted that the occurrences of condition (i) and
condition (ii) have a computable probability, which will be
dealt with in Section 6.

4 Algorithms and Complexity Analysis
 The algorithm that encapsulates the 12 steps is given below
in Algorithm 1. We analyze the computational complexity of
the algorithm as follows:
 The algorithm halts when it finds the first motif. In the
worst case, statement 1 is executed n times. For each
execution of statement 1, statement 2 is executed at most L – l
+ 1 times. Statement 3 requires comparing the current root Rij
with all possible l-mers in n – 1 input strings for determining
whether it is the motif. This requires at most (n – 1)*(L – l +
1) l-mer comparisons. Each comparison involves at most l
equality checks. If Rij is not the motif, the control comes to
statement 5. From here on, we look for a motif using
modeling. In statement 5, the set C is constructed. This
requires (n – 1)*(L – l + 1) l-mer comparisons. Since the root
is a string of size l over an alphabet of size 4, and a candidate
is a 2d-neighbor of the root, the probability that any l-mer is a
candidate is given by the ratio of the total number of 2d-
neighbors that any l-mer can have, to the total number of l-
mers possible. This ratio is:
 2d
 Σ 3k (l k
PC = k = 0 (1)

)
 4l
 The probable number of candidates in C is given by
multiplying the probability PC with the total number of l-mers
in the field of search, which is (n – 1)*(L – l + 1):
|C| = (n – 1) * (L – l + 1) * PC (2)
 Among the candidates in C, those that are at a distance
of exactly 2d are in the set Cm. These are the model-
candidates. By statement 6, the root is modeled on at most
|Cm| model-candidates. As Cm ⊆ C, |Cm| <- |C| and therefore the
root is modeled on at most |C| model-candidates. In statement
7, the 2d points of difference between Rij and one model-
candidate are identified. This involves at most l equality
checks. In statement 8, there are (

 In summary, the upper-bound on the number of
computations is given by:

2d
d) possible combinations of

d points among the 2d points of difference. In statement 9, Rij
is modeled according to one combination to get Rijm, which
takes at most d operations. For each Rijm, statement 10 is
executed to determine whether it is the motif, which involves
at most |C| l-mer comparisons. Each comparison involves at
most l equality checks.

|N| = O(n * (L – l + 1) * (|C|*(l + (2d
d

 The values of n and L are usually constant (20 and 600
respectively), and as L >> l in all practical PMPs, (L – l + 1) ≅
L. Omitting the constant factors, we have:

) * (d + |C|*l)) + (n –
1)*(L – l + 1)*2*l)) (3)

|N| = O (|C| * (l + (2d
d

Thus the significant factors affecting the running time are the
square of the number of candidates per root |C|2, the number
of combinations per candidate (

) * (d + |C|*l))) (4)

2d
d

), and l and d.

Algorithm 1 FindMotif
Input: n, L, l , d
Output: M (motif)
1: for i = 0 to n - 1 do
2: for j = 0 to L - l do
3: check whether root Rij (an l-mer in
 sequence i starting at position j) is the motif
4: if Rjj is not the motif then
5: generate C, the set of all candidates, of which
 Cm is the subset containing the model-candidates
6: for each model-candidate c in Cm do
7: identify the 2d points of difference
 between Rij and c
8: for each combination of d points of
 difference between Rij and c do
9: model Rij on c to get Rijm
10: check whether Rijm is the motif using C
11: if Rijm is the motif then

 output Rijm as M
 HALT
 end if
12: end for
13: end for
14: else
15: output Rjj as M

 HALT
16: end if
17: end for
18: end for

5 Overview of Statistical Properties
 We have performed a detailed statistical analysis of various
factors involved in the computation. Owing to space
constraints, we discuss here the salient statistical properties
revealed by the analysis, omitting the details.
 As noted in Section 4, a major contribution to the
computational workload of the method comes from the square
of the number of candidates per root, |C|2. An increase in this
factor increases the computational workload. The value of |C|
depends on the value of l and d (Equations 1 and 2) such that:

(i) increasing l keeping d fixed decreases |C|, and
(ii) increasing d keeping l fixed increases |C|.

 As the computational workload is proportional to |C|2, it is
highly sensitive to the ratio l/d. Increasing d keeping l fixed
results in massive increase of workload for every step of
increment of d. Our analysis shows that, for a broad range of

values of l (from 12 to at least 50), a massive increase of |C|
occurs when d is increased from 0.25l to 0.25l + 1, rendering
problem sizes in which d is greater than 0.25l challenging for
this method. Conversely, decreasing d keeping l fixed results
in a massive drop in |C| for every step of decrement of d.
Problem sizes in which d is lesser than 0.25l are solved
extremely fast.
 Another major contributor to the computational workload,
as noted in Section 4, is the number of modeling combinations
per model-candidate, given by (2d

d). This number has a sharply
increasing trend for every step of increment in d. Combined
with the property that a massive increase of |C| occurs when d
is increased from 0.25l to 0.25l + 1, a steep barrier exists at
the boundary between those problem sizes in which d

 Table I presents the values of |C|, |C|2 and (

<- 0.25l,
and those in which d > 0.25l (for all values of l ranging from
12 to at least 50).

2d
d) for a few

selected problem sizes at the d = 0.25l boundary. The notable
feature is that as the problem sizes increase, |C| (and |C|2)
decrease sharply at every step, and (2d

d) increases sharply. As
the computational load is proportional to |C|2 and (2d

d), the
opposing trends of |C|2 and (2d

d) mean that the trend of the
computational load is essentially U-shaped, with a minima
occurring in the mid-range of problem sizes. (The opposing
trends of |C|2 and (2d

d

) do not perfectly balance each other as
their rates of change are not the same, and the proportions of
their contribution to the workload are not the same. Therefore
we should not expect a flat trend of the workload.)

TABLE I
NUMBER OF CANDIDATES PER ROOT AND NUMBER

OF MODEL COMBINATIONS PER CANDIDATE FOR
SELECTED PROBLEM SIZES

l 12 16 20 24 28 32 36 40 44 48
d 3 4 5 6 7 8 9 10 11 12

|C| 609 302 153 79 41 22 11 6 3 2
|C|2 370881 91204 23409 6241 1681 484 121 36 9 4
(2d

d 20) 70 252 924 3432 12870 48620 184756 705432 2704156
Note: All values of d are equal to 0.25l.

 We now turn to the statistical properties of d-neighbors.
For modeling to successfully find the motif, the d-neighbor of
the motif in sequence 0 has to be at a distance of exactly d
from the motif. Those d-neighbors that are at a distance of less
than d from the motif are valid d-neighbors, but do not contain
enough information to find the motif. As such, the d-neighbor
in sequence 0 may or may not be at a distance of exactly d
from the motif. The statistics show that the probability of the
d-neighbor of the motif in sequence 0 being at a distance of
exactly d from the motif is 90% or better, for all problems
sizes in which l is in the range of 12 to 50 and d is d <-

 In the 10% of the cases in which the d-neighbor in
sequence 0 is at a distance of less than d from the motif, after
processing the entire sequence 0 the motif will not be found
and method will enter Step 11. Input sequence 1 will become
the new sequence 0. The probability that the d-neighbors of

0.25l.
(Uniform random distribution of d-neighbors is assumed.)

the motif in the first two input sequences are both at a distance
less than d from the motif is ~1% (by multiplying the 10%
probability of each sequence, as they are mutually
independent.) Therefore probability that the d-neighbor of the
motif in the new sequence 0 is at a distance of exactly d from
the motif is about 99%, and the method can be expected to
enter Step 11 for a second time only in 1% of the cases.
 The second condition for modeling to successfully find the
motif is that at least one d-neighbor in input sequences 1 to n
– 1 should be at a distance of exactly 2d from the d-neighbor
in sequence 0. The probability of such a d-neighbor existing
has been found to depend on the ratio l / d. If d is increased
keeping l fixed, the probability decreases, and if l is increased
keeping d fixed, the probability increases. If the probability is
too low and therefore such a d-neighbor does not exist, a
different input sequence has to be taken as sequence 0. The d-
neighbor in the new sequence 0 may be such that there is at
least one d-neighbor in input sequences 1 to n – 1 that is at a
distance of exactly 2d from it. That is, Step 11 has to be
executed.
 For problem sizes that have higher values of d relative to l,
the method enters Step 11 more number of times. The number
of times that the method enters Step 11 is called the Swap
factor (S), and it can be probabilistically calculated for every
problem size, from the statistical properties of d-neighbors
through the values of l and d. The problem of swapping,
however, has been found to become acute only for PMP sizes
of (36, 9) and higher (when d is restricted to 0.25l or less).
Table II shows the calculated values of the Swap factor S for
selected problem sizes having l in the range of 36 to 50.

TABLE II
SWAP FACTOR S FOR SELECTED PROBLEM SIZES

l = 36
d 8 9 10 11 12
S 0 1 2 7 25

l = 40
d 9 10 11 12 13
S 0 1 4 11 38

l = 44
d 10 11 12 13 14
S 1 2 5 15 51

l = 48
d 11 12 13 14 15
S 1 3 8 21 67

l = 50
d 11 12 13 14 15
S 1 2 6 15 44

6 Experimental Results
 We implemented the modeling method in a single-threaded
C++ program and executed it for 11 selected problem sizes on
a system with 2.2GHz Intel Core2 Duo Processor T6600, 800
MHz FSB and 4 GB RAM.

 Although the algorithm terminates when the first motif is
found, in the implementation we processed all the roots so as
to observe the processing time for the entire sequence 0. This

is required because the ‘correct’ root (i.e. the d-neighbor of
the motif) in sequence 0 can occur anywhere in the sequence
from position 0 to position L – l, which means the motif may
be found at any stage in the processing of sequence 0. The
time taken to find the motif is therefore not a meaningful
indicator of performance. The meaningful indicator is the time
taken to process the entire sequence 0.
 Also in the implementation, 20 trials were conducted for
each problem size, using each of the 20 input sequences as
sequence 0, by turns. The rotation was done to observe the
variation in processing time when different input sequences
are taken as sequence 0. (This rotation of input sequences is
unrelated to Step 11 of the method, by which if the motif is
not found after processing sequence 0, another input sequence
is used as sequence 0, till all the 20 input sequences are used
up. It has the same effect as Step 11, however, and therefore,
Step 11 of the method was omitted in the test runs as
redundant.)

 The running time, has to be subjected to certain
considerations. Firstly, because the d-neighbor of the motif in
sequence 0 is at a distance of exactly d from the motif in only
90% of the cases, the extra time taken when the method enters
Step 11 in 10% of the cases has to be accounted for. Secondly,
when the Swap factor S is ≥ 1, the method enters Step 11 S
times, and processes a new sequence 0 each time. Therefore
the running time has to be multiplied by S. (Only problem
sizes (36, 9) and above are affected by this, however.)
Thirdly, the time taken to process sequence 0 is different
when a different input sequence is taken as sequence 0. This is
because all the roots are different and exactly the same
number of candidates will not be found for the roots (see
Equations 1 and 2). As the complexity is proportional to |C|2,
the running time is sensitive to fluctuations in |C|.
 For problem size (36, 9), the lowest time among the 20
trials, to process all the roots in sequence 0 (=565 in number),
was 21 seconds. The motif was found in 9 seconds by
modeling root # 318 on l-mer # 185 of sequence 4. (This
means that the d-neighbor of the motif in sequence 0 was at
position 318, and there was a d-neighbor of the motif in
sequence 4 at position 119, that was its ‘2d’ neighbor.)
 The highest time among the 20 trials was 244 seconds. The
motif was found in 129 seconds by modeling root # 185 on l-
mer # 318 of sequence 16.
 The average time over the 20 trials, for problem size (36,
9), was 117 seconds. The motif was found on 14 of the 20
trials and not found on 6.
 We term the average time over the 20 trials as tAVG20, and
deem the indicator of the time taken to find the motif in
sequence 0 to be 0.5 * tAVG20. This is the intermediate case,
between the two extremes of the ‘correct’ root occurring at
position 0 (in which case it takes ~ 0 time to find the motif),
and occurring at position L – l (in which case it takes the full
average time of tAVG20).

 To account for the extra time taken when the method enters
Step 11, in 10% of the cases that the d-neighbor of the motif
in sequence 0 is not at a distance of exactly d from the motif,
an amortized amount of 10% is added to tAVG20.
 The time to process sequence 0, obtained from these two
considerations, is:
tCORR = 0.5 * tAVG20 + 0.1 * tAVG20 = 0.6 * tAVG20 (5)
 For problem size (36, 9), tCORR is 0.6 * 117) = 71 sec. We
now consider the extra time taken on account of the Swap
factor S. If S swaps are expected, an amount of time equal to
S * tAVG20 has to be added to tCORR to get the expected time
taken to find the motif. Thereby, the expected time taken to
find the motif tEXP is: tEXP = (S + 0.6) * tAVG20 (6)
 Note that the full tAVG20 rather than half has to be
considered for swap time, because the method always runs
through the entire sequence 0 before making a swap.
 For problem size (36, 9), 1 swap is expected (see Table II).
Therefore, the expected time taken to find the motif tEXP for
problem size (36, 9) comes to (1 + 0.6) * 117 = 187 sec.
 Table III shows the values of the expected time taken to
solve problem sizes in the range of l = 12 to 50 having d =
0.25l. For each problem size, the amount of time added on
account of swaps is indicated, as is the 10% correction amount
to account for the ‘correct’ root not occurring in sequence # 0
of the input 10% of the time.
 It can be observed from Table III that the best-case
performance in the test runs was for problem size (32, 8), with
an expected time of 48 seconds, and the worst-case
performance was for problem size (48, 12), with an expected
time of 6892 seconds, or about 1.9 hours.
 The trend in Table III of the expected running time is more
or less flat in the range (12, 3) to (24, 6). In the range (28, 7)
to (48, 12), there is a clear U-shaped trend with a minima
occurring in the mid-range at (32, 8). In this range, the trend is
in line with what was expected for the entire range from the
statistical analysis in Section 5 (the value for (50, 12) is
irrelevant for the trend, as it is an anomalous problem size in
the table.) The other notable feature in Table III is the
variation over 20 trials, of the range of time taken to process
sequence 0. The ratio of the maximum time taken to the
minimum time taken increases from about 1 at (24, 6) to about
28 at (44, 11), and then drops to being about 10 for (48, 12)
and 5 for (50, 12). The reason for this trend remains to be
investigated.
 For problem sizes in which d is less than 25% of l, the
method is expected to perform much faster than for problem
sizes in which d is exactly 25% of l (see Section 5). This has
been observed to be the case in practice, and as a ready
indicator of the increase in speed for problem sizes in which d
is less than 25% of l, the time taken for problem size (50, 12)
is included in Table III. This can be compared with the time
taken for problem size (48, 12). Although l is larger in the (50,
12) problem, it is solved in less than a third of the time as (48,
12), because d is slightly less than 25% of l in it. The
consequence of a slightly smaller d is a significantly reduced
computational workload, and also a smaller swap factor S. (It
can be observed from Table II that the swap factor decreases
with a decrease in d relative to l.) These factors combine to

greatly reduce the time taken to solve the (50, 12) problem
relative to the (48, 12) problem. Other problem sizes in which
d is < 0.25l have been omitted due to space constraints.

TABLE III
TIME TAKEN BY MODELING METHOD FOR

SELECTED PROBLEM SIZES
(1)

Problem
size

.

(2) (3)
tCORR
0.6 x
(2c)

(4)
Swap
factor

S

(5)
S *

tAVG20
(4)x(2c)

(6)
tEXP

.
(3)+(5)

Time for Seq. 0
Min Max tAVG20
(a) (b) (c)

(12, 3) 1216 1335 1259 756 0 0 756
(16, 4) 1236 1326 1277 767 0 0 767
(20, 5) 1372 1643 1477 887 0 0 887
(24, 6) 1195 1679 1408 846 0 0 846
(28, 7) 288 519 381 229 0 0 229
(32, 8) 25 150 80 48 0 0 48
(36, 9) 21 244 117 71 1 117 187

(40, 10) 33 522 163 98 1 163 262
(44, 11) 24 666 367 221 2 735 955
(48, 12) 645 6625 1939 1164 3 5818 6982
(50, 12) 389 2126 869 522 2 1738 2260

 Note: All times are in seconds.
 Min, Max and Average times are from 20 trials.

 It should be noted that tEXP reported in Table III is derived
from practically observed values, and can vary either way,
when working with different input sets generated of the same
problem size. A different set of n input sequences would have
a different distribution of l-mers, affecting the values of |C|
and also possibly the number of actual swaps that happen.
However the overall trend over the different problem sizes
will be more or less the same.
 Further, as with any computer program, tEXP depends
heavily on the platform used (including the hardware and the
operating system) and also the implementation (for example,
using the bitset data structure rather than character or string
formats for the input sequences and l-mers results in a speed-
up of about 2x, as comparison operations run much faster with
the bitset data structure).
 Coming to the memory requirements, the method uses very
little memory. We have calculated that the worst-case memory
requirement is well under 1 MB, which is negligible.
 From these facts, it is established that the method is very
effective for solving PMPs as large as (48, 12). Thus it solves
problems much larger than those reported solved in the
literature, in running times much shorter than the times
reported for smaller problems in the literature. For
comparison, Table IV contains representative samples of the
time taken by various other methods as reported in the
literature.

7 Summary and Future Work
An efficient method of solving the Planted Motif Problem has
been developed that uses a technique called modeling. The
method is very fast over a broad range of problem sizes, and

takes up very little memory. Using the method, PMPs having
problem sizes up to (48, 12) have been solved, with a single-
threaded program executed on a system having one 2.2GHz
Intel Core2 Duo Processor T6600, 800 MHz FSB and 4 GB
RAM.
 The high speed of the method, combined with low memory
requirement brings motif-finding problems of the order of (48,
12) within easy reach of ordinary desktop/laptop computers.
The program can be run comfortably along with the other
applications that are typically found in a desktop environment.
(In other words, high-end / dedicated systems are not
required.)

In conclusion, we note that modeling is independent of the
radix of the alphabet, as it works by one-to-one substitution of
characters. The same amount of time is taken to model l-mers
over an alphabet of size 20, say, as it takes to model l-mers
over an alphabet of size 4. As the method is not restricted to
the A, C, G, T alphabet of the Planted Motif Problem, it can
have applications in other areas of pattern-finding, which is to
be investigated.

TABLE IV
REPRESENTATIVE SAMPLES OF TIME TAKEN BY

VARIOUS OTHER METHODS

A Algorithm
(l, d) Time Time Time Time

 PROJECTION Styczynski et al.’s ExVote
(10,2) (161.1s) (8 min) (0.1 s)
(11,2) (12.5 s) (< 1 min) (0.7 s)
(12,3) (8.7 min) (10.5 h) (9.8 s)
(13,3) (46.0 s) (10 min) (17.4 s)
(14,4) (15.4 min) (> 3 months) (197.5 s)
(15,4) (129.0 s) (6 h) (206.1 s)
(17,5) (273.2 s) (3 weeks) (27 min)
Source: An Efficient Algorithm for Extended (l, d)-Motif Problem With
Unknown Number of Binding Sites, by Leung and Chin [1]

B Algorithm
(l, d) Stemming MITRA PMSPrune RISOTTO
(9,2) 0.95s 0.89s 0.99s 1.64s
(11,3) 8.8s 17.9s 10.4s 24.6s
(13,4) 31s 203s 103s 291s
(15,5) 187s 1835s 858s 2974s
(17,6) 1462s 4012s 7743s 29792s
(19,7) 8397s n/a 81010s n/a
Source: Efficient Discovery of Common Patterns in Sequences Over
Large Alphabets, by Kuksa And Pavlovic [9]

C Algorithm
 BitBased

(l, d) 16 CPU 8 CPU 4 CPU
(11,3) 1s 1s 2s
(13,4) 2s 2s 4s
(15,5) 15s 24s 47s
(17,6) 2.8m 5m 9.2m
(19,7) 35m 63m 112m
(21,8) 7.8h - -

Source: An Efficient Multicore Implementation of Planted Motif
Problem, by Ranjan et al [7]
Note on Table IV: Problems larger than (21,8) have not been
reported solved to the best of our knowledge.

8 References
[1] H.C.M. Leung and F.Y.L. Chin, “An efficient algorithm

for the extended (l,d)-motif problem with unknown
number of binding sites”, Proc. 5th IEEE Symposium on
Bioinformatics and Bioengineering (BIBE’05), 2004.

[2] P. Pevzner and S.H. Sze, “Combinatorial approaches to
finding subtle signals in DNA sequences”, Proc. Eighth
International Conference on Intelligent Systems for
Molecular Biology, 2000, pp. 269-278.

[3] S. Rajasekaran, S. Balla, and C.-H. Huang, “Exact
algorithms for planted motif challenge problems”, Proc.
Third Asia-Pacific Bioinformatics Conference, Singapore,
2005.

[4] A. Price, S. Ramabhadran, and P. A. Pevzner, “Finding
subtle motifs by branching from sample strings”,
Bioinformatics, 1 (1), 2003, pp. 1-7.

[5] E. Eskin and P. Pevzner, “Finding composite regulatory
patterns in DNA sequences”,
Bioinformatics S1, 2002, pp. 354-363.

[6] J. Buhler and M. Tompa, “Finding motifs using random
projections”, Proc. Fifth Annual International
Conference on Computational Molecular Biology
(RECOMB), April 2001.

[7] N. S. Dasari, R. Desh, and M. Zubair, “An efficient
multicore implementation of planted motif problem”,
Proc. 2010 International Conference on High
Performance Computing & Simulation (HPCS 2010),
France, 2010, pp. 9-15.

[8] F.Y.L. Chin and H.C.M. Leung, “Voting algorithms for
discovering long motifs”, in Proc. 3rd Asia-Pacific
Bioinformatics Conference (APBC), Singapore, 2005. pp.
261–271.

[9] P.P. Kuksa and V. Pavlovic, “Efficient discovery of
common patterns in sequences over large alphabets”, in
DIMACS Technical Report, 2009.

[10] J. Davila, S. Balla, and S. Rajasekaran, “Fast and
practical algorithms for planted (l, d) motif search”,
IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 4(4), 2007, pp. 544–552.

[11] N. Pisanti, A. Carvalho, L. Marsan, and M.-F. Sagot,
“RISOTTO: Fast extraction of motifs with mismatches”,
Proc. Latin American Theoretical Informatics Symposium
(LATIN), Chile, 2006, pp. 757–768.

[12] M.P. Styczynski, K.L. Jensen, I. Rigoutsos, and G.N.
Stephanopoulos, “An extension and novel solution to the
(l,d)-motif challenge problem”, Genome Informatics, 15,
2004, pp 63-71.

	Solving Planted Motif Problem Using Modeling Method
	1 Introduction
	2 Problem Illustration and Previous work
	3 Proposed Method
	4 Algorithms and Complexity Analysis
	5 Overview of Statistical Properties
	6 Experimental Results
	7 Summary and Future Work
	8 References

