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Abstract - In this paper we describe a new method for solving 
the Planted Motif Problem that has applications in 
computational biology. A number of algorithms to solve this 
problem have been proposed in the past. The largest problem 
reported solved in the literature is (21, 8). Using the new 
method we have solved much larger problems, up to a size of 
(48, 12). The new method is also much faster, and we compare 
its performance with the best performances reported in the 
literature.  
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1 Introduction 
  The Planted Motif Problem (PMP) may be abstractly 
defined as: “Given a set of n strings, each of length L, over an 
alphabet Σ, find a string M of length l  < L over Σ, such that 
there is at least one d-neighbor of M in each of the n strings, 
where a d-neighbor is a string of length l that differs from M 
in at most d positions and M is the motif  for the given set of  
n strings.”  
 PMP has applications in molecular biology. Identifying 
subtle signals in the transcription-factor binding sites of 
several genes is the primary application of PMP. Finding such 
regulatory patterns among DNA sequences aids the study of 
gene regulatory networks [1]. The alphabet of the Planted 
Motif Problem is usually {A, C, G, T}, corresponding to the 
four nucleotide bases that constitute DNA. In principle, 
however, the problem can be posed for strings over any finite 
alphabet.  
  The Planted Motif Problem can be posed for different 
values of ‘l’ and ‘d’. Larger values of ‘l’ and ‘d’ constitute 
larger problems, and typically take more time and/or memory 
to solve. The pair (l, d) is used to express the size of a given 
problem. Most researchers keep ‘n’ and ‘L’ fixed at 20 and 
600, respectively [2].  
     Several methods currently exist to solve the PMP. These 
are: PMS1 [3]; Pattern Branching [4]; WINNOWER [2]; 
MITRA [5]; Random Projection [6]; Bit-based Multi-core [7]; 
ExVote [8], Stemming [9], PMSPrune [10], RISOTTO [11], 
and algorithms for solving the Extended Motif Problem 
(EMP) [1] [12].  
      We summarize some of these methods below. All these 
methods have limitations in the size of the problems that they 
solve and the running time that they require.  
   In contrast to these existing algorithms, we approach the 
motif-finding problem with a method of deriving the motif 
from clues present in the input strings. If there is a motif of 
length l present for a given set of input strings, the length l 

substrings of the input exhibit certain simple properties. We 
identify these properties and use them to construct the motif. 
The method has been used to solve problem sizes much larger 
than those reported solved in the literature, in times much 
shorter than the times reported for smaller problems in the 
literature. The method also holds promise for problems of 
larger alphabet size than the DNA alphabet size of 4.  
      The rest of the paper is organized as follows. In section 2, 
we illustrate the problem and summarize previous work in the 
area. Section 3 describes ‘modeling’ and the discovered 
properties as a set of propositions. Section 4 presents a formal 
algorithm and analysis of the computational complexity. In 
Section 5 we provide an overview of the statistical properties 
of the factors involved in the computation.  In section 6, we 
present the results that show the superiority of the proposed 
method in terms of ability to solve larger problems with 
smaller run times. We also state the notable shortcomings of 
the method. Finally, Section 7 summarizes our contributions 
and discusses future work. 

2 Problem Illustration and Previous work  
 The Planted Motif Problem has been an area of active 
research for about the last twenty years, and a number of 
different approaches have been described.  
    Before we describe the previous work, let us look at an 
example to illustrate the problem. Consider a set of 3 DNA 
sequences, each of length 32. The problem is to find a string 
(motif) of length 6, for which a 2-neighbor exists in each of 
the 3 sequences. Here, n=3, L=32, l=6, d=2, and ∑={A, C, G, 
T}. The size of the problem is (6, 2).  
 
0 GTCAGACAGATCGTGTTCTATACGACGACTTC  
1 CTATGACCAAGGGATTTCTAACCACGGCACTT  
2 ATCAGTCCCAGGGTGTTCCGCTCGACGTGTTC 
 
     For this problem, there exists a motif – GGCTCG. The 
sub-sequences of length 6 that are in bold face are d-neighbors 
of the motif. The first substring AGATCG differs from the 
motif at the 1st and 3rd positions. The 2nd substring GGCACT 
differs from the motif at the 4th and 6th positions. The third 
substring CGCTCG differs at only the 1st position. So 
GGCTCG is one of the solutions. There could be more than 
one motif. But the problem statement calls for finding any one 
such string. 
     It is important to note that the motif itself may not literally 
occur in any of the input sequences. All that is required is that 
a d-neighbor of the motif occurs in each of the input 
sequences.  



      We now summarize previous efforts to solve this problem. 
WINNOWER [2] takes a graph-based approach to solve the 
problem. It finds cliques in a graph constructed by 
representing each length l substring of the input as a node. 
Thus the number of nodes will be n*(L-l+1). WINNOWER is 
effective up to problem sizes of (18, 5) and requires 
substantial computational resources (both time and memory).  
    MITRA [5] is based on a trie (or prefix tree) traversal 
algorithm. A mismatch tree data structure is used, in which all 
the possible patterns are segregated into disjoint subsets, with 
each subset starting with a given prefix. It is effective up to 
problem sizes of (18, 6), taking 40 minutes and 650 MB of 
memory. 
       PatternBranching [4] starts with a random seed string and 
searches for the length l neighbors of this string in the input. It 
scores the neighbors with an appropriate scoring function and 
selects the best scoring neighbor.  
      The Random Projection Algorithm [6] finds motifs using 
random projections. For each length l substring of the input, a 
length k string is constructed as a subsequence of the original 
substring, sharing k random positions (i.e., it is a random 
projection). All the length l substrings are hashed using the 
length k string of any length l substring as the hash value. If a 
hashed group has at least a threshold number of substrings in 
it, then it is likely that the motif will have its length k 
projection equal to the length k projection of this group. The 
largest problem the method is reported to have solved is 
(18,6), in about one hour. 
      The PMS1 algorithm [3] is based on exhaustive 
enumeration. The Bit-based algorithm [7] is also based on 
exhaustive enumeration, and is a multicore (i.e. parallel 
processing) implementation, with modifications to address 
memory-sharing issues and enhance performance. The largest 
problem the method is reported to have solved is (21, 8), in 
7.8 hours, using 16 CPU cores [6].  
 
3 Proposed Method 
Our method is based on a process that we call modeling. If 
any sequence of length l on the alphabet ∑ is an ‘l-mer’, and if 
the number of positions at which any two l-mers differ is the 
‘distance’ between them, then given two l-mers l1 and l2 that 
are at a distance of 2d from each other, we can construct 
another l-mer lm that is at a distance d from both l1 and l2 as 
follows:  

(i) Note the points at which l1 differs from l2 (there are 
2d such points)  

(ii) To obtain lm, choose any d points in l1 out of the 2d 
points of difference with l2, and replace them with 
the corresponding letters in l2.  

 
     For example, consider two l-mers l1= AGATCG and l2 = 
GGCACT. They differ in four positions (bold faced). We can 
obtain lm by replacing the letters at any two of these four 
positions in l1, say the 1st and 3rd positions, by the 
corresponding letter in l2, thus forming lm=GGCTCG. This 
differs from both l1and l2 at two positions.  

     We define the process of finding lm by replacing d letters in 
l1 with the corresponding letters of l2 as modeling – l1 is 
modeled on l2, and l2 is a model for l1. 
     Based on the above definition, we make the following 
propositions. Note beforehand that for an input having n 
sequences of length L, there are L – l + 1 number of l-mers in 
each of the n input sequences, and the input sequences are 
numbered from 0 to n – 1.  
Proposition 1:  If there exists a motif of length l for the given 
n sequences, then in each sequence, at least one l-mer of 
length l is a d-neighbor of the motif. In particular, one of the L 
– l + 1 number of l-mers in sequence 0 is a d-neighbor of the 
motif.  
 Proposition 2: If there exists a motif of length l for the given 
n sequences, then the d-neighbor in every sequence from 
sequences 1 to n – 1 is at a distance of at most 2d from the d-
neighbor in sequence 0.  
Proposition 3: If there exists a motif of length l  for the given 
n sequences, then the motif can be found by modeling the d-
neighbor in sequence 0, on any d-neighbor in sequences 1 to n 
– 1 that is at a distance exactly 2d from it.  
     The logic of Proposition 3 is described as follows:  
     If two d-neighbors of the motif, dn0 and dn1, are at a 
distance of exactly 2d from each other, then they are identical 
to each other at exactly l – 2d points. If dn0 and dn1 are 
identical to each other at exactly l – 2d points, the motif 
consists of the identical l – 2d points. This follows necessarily 
from the definition of ‘d-neighbor’ (or, what is the same, from 
the definition of ‘motif’).  
     Therefore, given two d-neighbors of the motif that are at a 
distance of exactly 2d from each other, l – 2d points of the 
motif are readily identified. The task is to identify the 
remaining 2d points of the motif.  
     The key is that these points are supplied by dn0 and dn1 
themselves. The remaining 2d points in the motif are the same 
2d points at which dn0 and dn1 differ. At each of the 2d points, 
the symbol in the motif is identical to the symbol at that point 
in either dn0 or dn1. Further, the motif is identical to dn0 at d 
of the 2d points, and to dn1 at the remaining d of the 2d points. 
Again, this follows necessarily from the definition of d-
neighbor.  
     So the task becomes one of constructing the motif by 
choosing d points from dn0 out of its 2d points of difference 
with dn1, and choosing d points from dn1 out of its 2d points 
of difference with dn0, and inserting the chosen 2d points into 
the corresponding 2d points in the motif.  
     We use modeling to achieve this effect. We take dn0 and 
model it on dn1 at d points out of the 2d points of difference. 
As there are  (2d

d  ) ways in which d points can be chosen out of 
2d points, there are  (  

    As it is not known a priori which l-mer in sequence 0 is a 
d-neighbor of the motif, it is required to choose each l-mer 
one-by-one for processing. Similarly, as it is not known a 
priori which l-mers in sequences 1 to n – 1 are d-neighbors of 
the motif, all the l-mers in sequences 1 to n – 1 that are at a 

2d
d ) ways in which dn0 can be modeled 

on dn1. The motif can be found by taking each variant of dn0 
by turns, and testing to see if it is the motif.  



distance of exactly 2d from the chosen l-mer in sequence 0, 
have to be found and considered as models.  
    When the d-neighbor of the motif in sequence 0 comes up 
for processing, all the d-neighbors of the motif in sequences 1 
to n – 1 that are at a distance of exactly 2d from it will be 
found, during the search for all the l-mers that are at a distance 
of exactly 2d from it (along with other l-mers that happen to 
satisfy the property). Thereby sooner or later the d-neighbor in 
sequence 0 will be modeled on a d-neighbor of the motif that 
is at a distance of exactly 2d from it, and the motif will be 
found. 
     Accordingly, we construct the following method, 
consisting of twelve steps numbered 1 thru 12, to find the 
motif:  
Step 1: Take the first l-mer of length l in sequence  0; call this 
the ‘root’.  
Step 2: Check whether the root is the motif by finding its 
distance from all the l-mers in sequences 1 to n – 1.  
Step 3: If the root is within distance d of at least one l-mer in 
each of the sequences 1 to n – 1, then the root is the required 
motif. Return the root. Otherwise, continue with the next step.  
Step 4: For the root, find all the 2d-neighbors in sequences 1 
to n – 1.  Call them the ‘candidates’.  
Step 5: From the set of candidates, take the first candidate 
that is at a distance of exactly 2d from the root.  Call it the 
‘model-candidate’. If no such model-candidate exists, repeat 
the steps from Step 1, taking as the root the next l-mer in 
sequence  0.  
Step 6: Model the root on the model-candidate. There are (2d

d  ) 
possible combinations for modeling the root on the model-
candidate. Take the first of the (  

Step 7: Check the distance of the modeled root from all the 
candidates (i.e., all the 2d-neighbors of the root.)  

2d
d ) possible combinations, 

and model the root according to it.  

Step 8: If the modeled root is within distance d of at least one 
candidate from each of the input sequences, it is the required 
motif. Return the modeled root. Otherwise, continue with the 
next step.  
Step 9: Repeat Step 6 by taking the next of the possible (2d

d  ) 
combinations and repeat Step 7. If all the (  

Step 10: If all the candidates found in Step 4 are exhausted 
and the motif is not found, repeat the steps from Step 1, taking 
as the root the next l-mer in sequence  0.  

2d
d ) combinations 

are exhausted and the motif is not found, repeat the steps from 
Step 5, by taking as the model-candidate the next candidate 
that is at a distance of exactly 2d from the root.  

Step 11: If all the l-mers in sequence 0 are exhausted and the 
motif is not found, relocate sequence 0 to the bottom of the 
input, such that it becomes sequence n – 1 and all the other 
sequences are promoted in the order by one step. In particular, 
sequence 1 becomes the new sequence 0. Then repeat the 
entire process from Step 1, with the new sequence  0.  
Step 12. If n – 1 input sequences have been promoted to 
sequence 0 and the motif is not found, then stop and return an 
exception.  
Explanation of Step 11: If all the l-mers in sequence 0 are 
exhausted and the motif is not found (but assumed to exist), it 
means that either:  

(i) the d-neighbor of the motif in sequence 0 is not at a 
distance of exactly d from the motif, or  

(ii) no d-neighbor is found in sequences 1 to n – 1 that is 
at a distance of exactly 2d from the d-neighbor in 
sequence 0  

     In either case, the fundamental requirement of the method, 
given under Proposition 3, is not met. Hence the method starts 
over with a different input sequence taken as sequence 0. 
     It should be noted that the occurrences of condition (i) and 
condition (ii) have a computable probability, which will be 
dealt with in Section 6.  
 
4 Algorithms and Complexity Analysis 
     The algorithm that encapsulates the 12 steps is given below 
in Algorithm 1. We analyze the computational complexity of 
the algorithm as follows:  
    The algorithm halts when it finds the first motif. In the 
worst case, statement 1 is executed n times. For each 
execution of statement 1, statement 2 is executed at most L – l 
+ 1 times. Statement 3 requires comparing the current root Rij 
with all possible l-mers in n – 1 input strings for determining 
whether it is the motif. This requires at most (n – 1)*(L – l + 
1) l-mer comparisons. Each comparison involves at most l 
equality checks. If Rij is not the motif, the control comes to 
statement 5. From here on, we look for a motif using 
modeling. In statement 5, the set C is constructed. This 
requires (n – 1)*(L – l + 1) l-mer comparisons. Since the root 
is a string of size l over an alphabet of size 4, and a  candidate 
is a 2d-neighbor of the root, the probability that any l-mer is a 
candidate is given by the ratio of the total number of 2d-
neighbors that any l-mer can have, to the total number of l-
mers possible. This ratio is:  
                      2d 
                      Σ 3k (  l  k 
PC  =            k = 0                                                                    (1) 

)      
                  4l  
         The probable number of candidates in C is given by 
multiplying the probability PC with the total number of l-mers 
in the field of search, which is (n – 1)*(L – l + 1):  
|C|   =  (n – 1) * (L –  l + 1) * PC                                       (2)  
         Among the candidates in C, those that are at a distance 
of exactly 2d are in the set Cm. These are the model-
candidates. By statement 6, the root is modeled on at most 
|Cm| model-candidates. As Cm ⊆ C, |Cm| <- |C| and therefore the 
root is modeled on at most |C| model-candidates. In statement 
7, the 2d points of difference between Rij and one model-
candidate are identified. This involves at most l equality 
checks. In statement 8, there are (  

     In summary, the upper-bound on the number of 
computations is given by:  

2d
d ) possible combinations of 

d points among the 2d points of difference. In statement 9, Rij 
is modeled according to one combination to get Rijm, which 
takes at most d operations. For each Rijm, statement 10 is 
executed to determine whether it is the motif, which involves 
at most |C| l-mer comparisons. Each comparison involves at 
most l equality checks.   



|N| = O( n * (L – l + 1) *  ( |C|*( l + (2d
d  

     The values of n and L are usually constant (20 and 600 
respectively), and as L >> l in all practical PMPs, (L – l + 1) ≅ 
L. Omitting the constant factors, we have:  

) * (d + |C|*l )) + (n – 
1)*(L – l + 1)*2*l ) )                                                             (3) 

|N|  =  O (  |C| * ( l + (2d
d  

Thus the significant factors affecting the running time are the 
square of the number of candidates per root |C|2, the number 
of combinations per candidate (

) * (d + |C|*l ) ) )                          (4) 

2d
d  

 

), and l and d. 

Algorithm 1 FindMotif  
Input: n, L, l , d 
Output: M (motif) 
1:  for i = 0 to n - 1 do 
2:      for j = 0 to L - l  do 
3:           check whether  root Rij (an l-mer in  
              sequence i starting at position j) is the motif 
4:           if Rjj is not the motif then 
5:     generate C, the set of all candidates, of which      
                  Cm is the subset containing the model-candidates  
6:       for each model-candidate c in Cm do 
7:           identify the 2d points of difference  
                         between Rij and c  
8:             for each combination of d points of  
                              difference between Rij and c do 
9:                 model Rij on c to get Rijm 
10:    check whether Rijm is the motif using C  
11:   if Rijm is the motif then  

     output Rijm as M   
                                  HALT 
  end if 
12:           end for 
13:      end for 
14: else  
15:     output Rjj as M  

    HALT 
16: end if 
17:      end for 
18: end for 
  
5 Overview of Statistical Properties 
 We have performed a detailed statistical analysis of various 
factors involved in the computation. Owing to space 
constraints, we discuss here the salient statistical properties 
revealed by the analysis, omitting the details.  
     As noted in Section 4, a major contribution to the 
computational workload of the method comes from the square 
of the number of candidates per root, |C|2. An increase in this 
factor increases the computational workload. The value of |C| 
depends on the value of l and d (Equations 1 and 2) such that:   

(i) increasing l keeping d fixed decreases |C|, and  
(ii) increasing d keeping l fixed increases |C|.  

     As the computational workload is proportional to |C|2, it is 
highly sensitive to the ratio l/d. Increasing d keeping l fixed 
results in massive increase of workload for every step of 
increment of d. Our analysis shows that, for a broad range of 

values of l (from 12 to at least 50), a massive increase of |C| 
occurs when d is increased from 0.25l to 0.25l + 1, rendering 
problem sizes in which d is greater than 0.25l challenging for 
this method. Conversely, decreasing d keeping l fixed results 
in a massive drop in |C| for every step of decrement of d. 
Problem sizes in which d is lesser than 0.25l are solved 
extremely fast.  
     Another major contributor to the computational workload, 
as noted in Section 4, is the number of modeling combinations 
per model-candidate, given by (2d

d  ). This number has a sharply 
increasing trend for every step of increment in d. Combined 
with the property that a massive increase of |C| occurs when d 
is increased from 0.25l to 0.25l + 1, a steep barrier exists at 
the boundary between those problem sizes in which d  

     Table I presents the values of |C|, |C|2 and (

<- 0.25l, 
and those in which d > 0.25l (for all values of l ranging from 
12 to at least 50).  

2d
d  ) for a few 

selected problem sizes at the d = 0.25l boundary.  The notable 
feature is that as the problem sizes increase, |C| (and |C|2) 
decrease sharply at every step, and (  2d

d ) increases sharply. As 
the computational load is proportional to |C|2 and (2d

d  ), the 
opposing trends of |C|2 and (  2d

d ) mean that the trend of the 
computational load is essentially U-shaped, with a minima 
occurring in the mid-range of problem sizes. (The opposing 
trends of  |C|2 and (2d

d  

 

) do not perfectly balance each other as 
their rates of change are not the same, and the proportions of 
their contribution to the workload are not the same. Therefore 
we should not expect a flat trend of the workload.)  

TABLE I  
NUMBER OF CANDIDATES PER ROOT AND NUMBER 

OF MODEL COMBINATIONS PER CANDIDATE FOR 
SELECTED PROBLEM SIZES 

 
l 12 16 20 24 28 32 36 40 44 48 
d 3 4 5 6 7 8 9 10 11 12 

|C| 609 302 153 79 41 22 11 6 3 2 
|C|2 370881 91204 23409 6241 1681 484 121 36 9 4 
(2d

d  20 ) 70 252 924 3432 12870 48620 184756 705432 2704156 
Note:  All values of d are equal to 0.25l.  
 
     We now turn to the statistical properties of d-neighbors. 
For modeling to successfully find the motif, the d-neighbor of 
the motif in sequence 0 has to be at a distance of exactly d 
from the motif. Those d-neighbors that are at a distance of less 
than d from the motif are valid d-neighbors, but do not contain 
enough information to find the motif. As such, the d-neighbor 
in sequence 0 may or may not be at a distance of exactly d 
from the motif. The statistics show that the probability of the 
d-neighbor of the motif in sequence 0 being at a distance of 
exactly d from the motif is 90% or better, for all problems 
sizes in which l is in the range of 12 to 50 and d is d <- 

     In the 10% of the cases in which the d-neighbor in 
sequence 0 is at a distance of less than d from the motif, after 
processing the entire sequence 0 the motif will not be found 
and method will enter Step 11. Input sequence 1 will become 
the new sequence 0. The probability that the d-neighbors of 

0.25l. 
(Uniform random distribution of d-neighbors is assumed.)  



the motif in the first two input sequences are both at a distance 
less than d from the motif  is ~1% (by multiplying the 10% 
probability of each sequence, as they are mutually 
independent.) Therefore probability that the d-neighbor of the 
motif in the new sequence 0 is at a distance of exactly d from 
the motif is about 99%, and the method can be expected to 
enter Step 11 for a second time only in 1% of the cases.  
      The second condition for modeling to successfully find the 
motif is that at least one d-neighbor in input sequences 1 to n 
– 1 should be at a distance of exactly 2d from the d-neighbor 
in sequence 0. The probability of such a d-neighbor existing 
has been found to depend on the ratio l / d. If d is increased 
keeping l fixed, the probability decreases, and if l is increased 
keeping d fixed, the probability increases. If the probability is 
too low and therefore such a d-neighbor does not exist, a 
different input sequence has to be taken as sequence 0. The d-
neighbor in the new sequence 0 may be such that there is at 
least one d-neighbor in input sequences 1 to n – 1 that is at a 
distance of exactly 2d from it. That is, Step 11 has to be 
executed.  
     For problem sizes that have higher values of d relative to l, 
the method enters Step 11 more number of times. The number 
of times that the method enters Step 11 is called the Swap 
factor (S), and it can be probabilistically calculated for every 
problem size, from the statistical properties of d-neighbors 
through the values of l and d. The problem of swapping, 
however, has been found to become acute only for PMP sizes 
of (36, 9) and higher (when d is restricted to 0.25l or less). 
Table II shows the calculated values of the Swap factor S for 
selected problem sizes having l in the range of 36 to 50.   
    

TABLE II  
SWAP FACTOR S FOR SELECTED PROBLEM SIZES 

l = 36 
d 8 9 10 11 12 
S 0 1 2 7 25 

l = 40 
d 9 10 11 12 13 
S 0 1 4 11 38 

l = 44 
d 10 11 12 13 14 
S 1 2 5 15 51 

l = 48 
d 11 12 13 14 15 
S 1 3 8 21 67 

l = 50 
d 11 12 13 14 15 
S 1 2 6 15 44 

 
6 Experimental Results 
     We implemented the modeling method in a single-threaded 
C++ program and executed it for 11 selected problem sizes on 
a system with 2.2GHz Intel Core2 Duo Processor T6600, 800 
MHz FSB and 4 GB RAM.  

    Although the algorithm terminates when the first motif is 
found, in the implementation we processed all the roots so as 
to observe the processing time for the entire sequence 0. This  

is required because the ‘correct’ root (i.e. the d-neighbor of 
the motif) in sequence 0 can occur anywhere in the sequence 
from position 0 to position L – l, which means the motif may 
be found at any stage in the processing of sequence 0. The 
time taken to find the motif is therefore not a meaningful 
indicator of performance. The meaningful indicator is the time 
taken to process the entire sequence 0.  
     Also in the implementation, 20 trials were conducted for 
each problem size, using each of the 20 input sequences as 
sequence 0, by turns. The rotation was done to observe the 
variation in processing time when different input sequences 
are taken as sequence 0. (This rotation of input sequences is 
unrelated to Step 11 of the method, by which if the motif is 
not found after processing sequence 0, another input sequence 
is used as sequence 0, till all the 20 input sequences are used 
up. It has the same effect as Step 11, however, and therefore, 
Step 11 of the method was omitted in the test runs as 
redundant.)  

     The running time, has to be subjected to certain 
considerations. Firstly, because the d-neighbor of the motif in 
sequence 0 is at a distance of exactly d from the motif in only 
90% of the cases, the extra time taken when the method enters 
Step 11 in 10% of the cases has to be accounted for. Secondly, 
when the Swap factor S is ≥ 1, the method enters Step 11 S 
times, and processes a new sequence 0 each time. Therefore 
the running time has to be multiplied by S. (Only problem 
sizes (36, 9) and above are affected by this, however.) 
Thirdly, the time taken to process sequence 0 is different 
when a different input sequence is taken as sequence 0. This is 
because all the roots are different and exactly the same 
number of candidates will not be found for the roots (see 
Equations 1 and 2). As the complexity is proportional to |C|2, 
the running time is sensitive to fluctuations in |C|.  
     For problem size (36, 9), the lowest time among the 20 
trials, to process all the roots in sequence 0 (=565 in number), 
was 21 seconds. The motif was found in 9 seconds by 
modeling root # 318 on l-mer # 185 of sequence 4. (This 
means that the d-neighbor of the motif in sequence 0 was at 
position 318, and there was a d-neighbor of the motif in 
sequence 4 at position 119, that was its ‘2d’ neighbor.)  
     The highest time among the 20 trials was 244 seconds. The 
motif was found in 129 seconds by modeling root # 185 on l-
mer # 318 of sequence 16.  
     The average time over the 20 trials, for problem size (36, 
9), was 117 seconds. The motif was found on 14 of the 20 
trials and not found on 6.  
     We term the average time over the 20 trials as tAVG20, and 
deem the indicator of the time taken to find the motif in 
sequence 0 to be 0.5 * tAVG20. This is the intermediate case, 
between the two extremes of the ‘correct’ root occurring at 
position 0 (in which case it takes ~ 0 time to find the motif), 
and occurring at position L – l  (in which case it takes the full 
average time of tAVG20).  



     To account for the extra time taken when the method enters 
Step 11, in 10% of the cases that the d-neighbor of the motif 
in sequence 0 is not at a distance of exactly d from the motif, 
an amortized amount of 10% is added to tAVG20.  
     The time to process sequence 0, obtained from these two 
considerations, is:  
tCORR =  0.5 * tAVG20 + 0.1 * tAVG20 = 0.6 * tAVG20          (5)  
     For problem size (36, 9), tCORR is 0.6 * 117) = 71 sec.  We 
now consider the extra time taken on account of the Swap 
factor S. If S swaps are expected, an amount of time equal to 
S * tAVG20 has to be added to tCORR to get the expected time 
taken to find the motif. Thereby, the expected time taken to 
find the motif tEXP is:  tEXP = (S + 0.6) * tAVG20     (6)  
     Note that the full tAVG20 rather than half has to be 
considered for swap time, because the method always runs 
through the entire sequence 0 before making a swap.  
     For problem size (36, 9), 1 swap is expected (see Table II).  
Therefore, the expected time taken to find the motif tEXP for 
problem size (36, 9) comes to (1 + 0.6) * 117 = 187 sec.  
     Table III shows the values of the expected time taken to 
solve problem sizes in the range of l = 12 to 50 having d = 
0.25l. For each problem size, the amount of time added on 
account of swaps is indicated, as is the 10% correction amount 
to account for the ‘correct’ root not occurring in sequence # 0 
of the input 10% of the time.  
     It can be observed from Table III that the best-case 
performance in the test runs was for problem size (32, 8), with 
an expected time of 48 seconds, and the worst-case 
performance was for problem size (48, 12), with an expected 
time of 6892 seconds, or about 1.9 hours.  
     The trend in Table III of the expected running time is more 
or less flat in the range (12, 3) to (24, 6). In the range (28, 7) 
to (48, 12), there is a clear U-shaped trend with a minima 
occurring in the mid-range at (32, 8). In this range, the trend is 
in line with what was expected for the entire range from the 
statistical analysis in Section 5 (the value for (50, 12) is 
irrelevant for the trend, as it is an anomalous problem size in 
the table.) The other notable feature in Table III is the 
variation over 20 trials, of the range of time taken to process 
sequence 0. The ratio of the maximum time taken to the 
minimum time taken increases from about 1 at (24, 6) to about 
28 at (44, 11), and then drops to being about 10 for (48, 12) 
and 5 for (50, 12). The reason for this trend remains to be 
investigated.  
     For problem sizes in which d is less than 25% of l, the 
method is expected to perform much faster than for problem 
sizes in which d is exactly 25% of l (see Section 5). This has 
been observed to be the case in practice, and as a ready 
indicator of the increase in speed for problem sizes in which d 
is less than 25% of l, the time taken for problem size (50, 12) 
is included in Table III. This can be compared with the time 
taken for problem size (48, 12). Although l is larger in the (50, 
12) problem, it is solved in less than a third of the time as (48, 
12), because d is slightly less than 25% of l in it. The 
consequence of a slightly smaller d is a significantly reduced 
computational workload, and also a smaller swap factor S. (It 
can be observed from Table II that the swap factor decreases 
with a decrease in d relative to l.) These factors combine to 

greatly reduce the time taken to solve the (50, 12) problem 
relative to the (48, 12) problem. Other problem sizes in which 
d is < 0.25l have been omitted due to space constraints.  

TABLE III 
TIME TAKEN BY MODELING METHOD FOR 

SELECTED PROBLEM SIZES  
(1)  

Problem 
size               

. 

(2) (3)           
tCORR   
0.6 x 
(2c) 

(4)       
Swap 
factor      

S                    

(5)              
S * 

tAVG20 
(4)x(2c)      

(6)                      
tEXP        

.                    
(3)+(5) 

Time for Seq. 0 
Min Max tAVG20 
(a) (b) ( c ) 

(12, 3) 1216 1335 1259 756 0 0 756 
(16, 4) 1236 1326 1277 767 0 0 767 
(20, 5) 1372 1643 1477 887 0 0 887 
(24, 6) 1195 1679 1408 846 0 0 846 
(28, 7) 288 519 381 229 0 0 229 
(32, 8) 25 150 80 48 0 0 48 
(36, 9) 21 244 117 71 1 117 187 

(40, 10) 33 522 163 98 1 163 262 
(44, 11) 24 666 367 221 2 735 955 
(48, 12) 645 6625 1939 1164 3 5818 6982 
(50, 12) 389 2126 869 522 2 1738 2260 

   Note:  All times are in seconds.  
 Min, Max and Average times are from 20 trials. 
 
     It should be noted that tEXP reported in Table III is derived 
from practically observed values, and can vary either way, 
when working with different input sets generated of the same 
problem size. A different set of n input sequences would have 
a different distribution of l-mers, affecting the values of |C| 
and also possibly the number of actual swaps that happen. 
However the overall trend over the different problem sizes 
will be more or less the same.  
     Further, as with any computer program, tEXP depends 
heavily on the platform used (including the hardware and the 
operating system) and also the implementation (for example, 
using the bitset data structure rather than character or string 
formats for the input sequences and l-mers results in a speed-
up of about 2x, as comparison operations run much faster with 
the bitset data structure).  
     Coming to the memory requirements, the method uses very 
little memory. We have calculated that the worst-case memory 
requirement is well under 1 MB, which is negligible.  
     From these facts, it is established that the method is very 
effective for solving PMPs as large as (48, 12). Thus it solves 
problems much larger than those reported solved in the 
literature, in running times much shorter than the times 
reported for smaller problems in the literature. For 
comparison, Table IV contains representative samples of the 
time taken by various other methods as reported in the 
literature.  
 
7 Summary and Future Work 
An efficient method of solving the Planted Motif Problem has 
been developed that uses a technique called modeling. The 
method is very fast over a broad range of problem sizes, and 



takes up very little memory. Using the method, PMPs having 
problem sizes up to (48, 12) have been solved, with a single-
threaded program executed on a system having one 2.2GHz 
Intel Core2 Duo Processor T6600, 800 MHz FSB and 4 GB 
RAM.  
     The high speed of the method, combined with low memory 
requirement brings motif-finding problems of the order of (48, 
12) within easy reach of ordinary desktop/laptop computers. 
The program can be run comfortably along with the other 
applications that are typically found in a desktop environment. 
(In other words, high-end / dedicated systems are not 
required.)  

In conclusion, we note that modeling is independent of the 
radix of the alphabet, as it works by one-to-one substitution of 
characters. The same amount of time is taken to model l-mers 
over an alphabet of size 20, say, as it takes to model l-mers 
over an alphabet of size 4. As the method is not restricted to 
the A, C, G, T alphabet of the Planted Motif Problem, it can 
have applications in other areas of pattern-finding, which is to 
be investigated.  

TABLE IV  
REPRESENTATIVE SAMPLES OF TIME TAKEN BY 

VARIOUS OTHER METHODS 
 

A Algorithm 
(l, d) Time Time Time Time 

 PROJECTION Styczynski et al.’s ExVote  
(10,2) (161.1s) (8 min) (0.1 s)  
(11,2) (12.5 s) (< 1 min) (0.7 s)  
(12,3) (8.7 min) (10.5 h) (9.8 s)  
(13,3) (46.0 s) (10 min) (17.4 s)  
(14,4) (15.4 min) (> 3 months) (197.5 s)  
(15,4) (129.0 s) (6 h) (206.1 s)  
(17,5) (273.2 s) (3 weeks) (27 min)  
Source: An Efficient Algorithm for Extended (l, d)-Motif Problem With 
Unknown Number of Binding Sites, by Leung and Chin [1]  

B Algorithm 
(l, d) Stemming MITRA PMSPrune RISOTTO 
(9,2) 0.95s 0.89s 0.99s 1.64s 
(11,3) 8.8s 17.9s 10.4s 24.6s 
(13,4) 31s 203s 103s 291s 
(15,5) 187s 1835s 858s 2974s 
(17,6) 1462s 4012s 7743s 29792s 
(19,7) 8397s n/a 81010s n/a 
Source: Efficient Discovery of Common Patterns in Sequences Over 
Large Alphabets, by Kuksa And Pavlovic [9] 

C Algorithm 
 BitBased 

(l, d) 16 CPU 8 CPU 4 CPU  
(11,3) 1s 1s 2s  
(13,4) 2s 2s 4s  
(15,5) 15s 24s 47s  
(17,6) 2.8m 5m 9.2m  
(19,7) 35m 63m 112m  
(21,8) 7.8h - -  

Source: An Efficient Multicore Implementation of Planted Motif  
Problem, by Ranjan et al [7]  
Note on Table IV: Problems larger than (21,8) have not been 
reported solved to the best of our knowledge.   
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