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Abstract - Deciphering the complex interaction between 
transcriptional regulatory (both trans- and cis-) elements 
comprehensively and identifying these potential binding sites 
are fundamental problems in functional genomics. Therefore, 
determining the transcription factors that regulate a gene in 
different cell types and the cis-regulatory elements they are 
binding to will help lay the foundation for building gene 
regulatory networks. While many computational approaches 
have been developed for lower eukaryotes and prokaryotes, 
most of them often do not generalize to vertebrates. Here, we 
use gene ontological evidences to perform functional 
enrichment analysis among the TFs and genes, and group the 
functionally related genes to characterize their 
transcriptional association. We also analyze correlations 
between TFs and genes using their expression profiles.  Thus, 
we search for putative transcriptional regulatory elements 
(transcription factor binding sites) along core promoter 
regions of the grouped genes. The performance of our search 
is highly satisfactory in term of binding site hit accuracy.  
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1 Introduction 
With the completion of draft sequencing of genomes 

of various species (a.k.a. human, mouse, rat, yeast etc.), one 
of the objectives of functional genomics is to interpret 
biological significance of the sequences, and to delineate the 
functional modules along the genomes. Although a large 
number of genes have been identified, their regulatory 
mechanism remains mostly unknown at the transcriptional 
level[1]. To understand the complex interaction of gene 
regulation comprehensively, we need to identify the 
regulatory elements in the human genome and comprehend 
how the genes regulate and interact with each other.  

Simply put, the interaction between transcription 
factor (TF, a.k.a. trans-elements) and transcription factor 
binding sites (TFBS, a.k.a. cis-elements) plays a crucial role 
in controlling gene expression. To modulate transcription and 
consequently to control the expression of genes, transcription 

factor proteins bind to binding sites in the promoter regions 
and thus either facilitate or inhibit the gene expression. To 
some extent, the pattern of expression of each gene can be 
formulated as a function of specific transcription factors, and 
their binding to the cis-elements. So, transcription factors 
constitute one of the major components in constructing gene 
regulatory networks. Literally, trans-elements can be viewed 
as “keys” needed to unlock the cis-elements which act as 
“locks”. To comprehend gene transcription mechanism, it is 
not sufficient to know which keys (trans-elements) are needed 
to lock/unlock a specific gene, but we also need to identify 
their corresponding locks (cis-elements). 

Since the human genome sequences are available, 
quite a number of computational approaches have been 
developed to discover functional elements in lower 
prokaryotes by combining genome sequence data and 
expression profiles[2]. But, due to more degenerate nature 
and complex interactions of TFs in the multi-cellular 
mammals (higher eukaryotes), most of the techniques are not 
able to generalize to mammal genomes. Moreover, these 
computational techniques are fallible to high false positive 
prediction rate[3]. In reality, this unusually high false 
prediction sometimes overwhelms the prospective techniques 
to deter finding regulatory regions accurately. On the other 
hand, comparative genome analysis, which is a biologically 
more relevant approach, provides a powerful way to search 
for similarities across the species at the sequence level and 
consequently to assign functional annotations[4]. Besides this, 
it is assumed that genes with similar functions are most likely 
to be regulated through the same mechanisms[5]. Thus, we 
can infer transcriptional sub-networks based on functional 
enrichment of genes. 

In this paper, we propose a systematic technique to 
identify putative transcriptional regulatory elements in human 
genome by functional enrichment of genes using ontology. 
Our hypothesis is inspired by the axiomatic supposition that 
genes that are in the same functional complex and located in 
closer cellular proximity are often regulated by the same 
transcription factors[6]. In fact, two proteins, sharing same 
molecular function in alike biological process and residing in 
close physical location, are more likely to interact with each 
other[7].  Therefore, clustering the genes set using functional 
enrichment allows us search for cis-modules along the 



promoter regions of the genes more efficiently. Initially, we 
analyze the correlations among the genes and corresponding 
TFs using microarray expression data. Besides this, we used 
the popular gene ontology to come up with the enrichment 
analysis of the genes. In fact, functional enrichment analysis 
complements the findings for correlations from expression 
profiles. To evaluate the efficacy of our approach, we 
validated our prediction for the transcription factor binding 
sites from functionally enriched gene clusters by comparing 
with TRANSFAC[8]. 

 
2    Related works 

In silico discovery[9] of binding sites is quite 
effective for prokaryotes, like Escherichia coli[10], where 
genomes are more compact with many genes being regulated 
by a single operon, is relatively easy to locate. Similar 
successes have been reported for simple unicellular 
eukaryotes, like Saccharomyces cerevisiae[2]. The main 
approach for finding cis-elements of such simple organisms is 
to find overrepresented motifs modeled by known background 
profiles, such as position weighted matrices (PWMs)[11], 
position specific score matrices (PSSMs)[12], while some use 
clustering to demarcate cis-regulatory modules[13, 14].  

For higher multi-cellular eukaryotes, model-based 
approaches[1, 15]  that discover patterns among co-expressed 
genes with respect to regulating transcription factors have 
been proposed. The idea behind these techniques involves the 
proximity of common cis-regulatory modules among the co-
expressed genes. Among other common model-based (a.k.a. 
machine learning) techniques, artificial neural networks[16], 
greedy algorithm[17], Gibbs Sampling[18], Markov 
chains[19], Expectation Maximization (EM) algorithm[20] 
are widely used  for eukaryotes. However, it has been 
reported that these model-prediction techniques are 
susceptible to high false positive prediction rate and majority 
of predicted TFBS generated with predictive models (in 
silico) have no functional role in vivo [21].  

Jin et al.[22] analyzed conserved human-mouse 
orthologous gene pairs to find core promoter elements and 
Bussemaker et al.[23] addressed the issue of detecting 
regulatory elements using correlation of expressions. A recent 
paper by Kim et al.[24] dealt with predicting transcriptional 
regulatory elements of human promoters using gene 
expression and promoter analysis data, which compare two 
pools of genes using z-scores. 
 
3  Methods and materials 
3.1 Data preprocessing  

We collected publicly available microarray data of 
normal human tissues[25], which provide us with 26,260 
unique genes from 35 different organs. In total, the data set 
consists of 115 tissue specimens. For each experimental tissue 
sample, Cy5- and Cy3- labeled samples were co-hybridized to 
a cDNA microarray containing 39,711 human cDNA’s, 
representing 26,260 different genes [26]. Expression ratios 

were globally normalized by mean-centering each gene across 
all arrays.  
 

3.2 Calculation of correlation co-efficient 
If a transcription factor does regulate a gene, 

according to reported results[15] in the literature, it is 
expected that they are linearly correlated. However, we 
observed that very often there seems to be a saturation point 
where the effect on the expression level of the gene 
diminishes as the level of transcription factor continues to 
increase and may reach a plateau or even decrease in some 
cases. Thus, instead of using simple linear correlation, we 
measure the correlation using Equation 1 as our regression 
curve.  
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Where α is an exponential constant 
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Where, n is the sample size, and xi and yi are the sum of X 
and Y from i = 1 to n 

 
In Equation (1), y is the original expression level, 

and it is multiplied by some exponential constant to generate 
new values. The value of parameter α was set to 0.25. This 
correlation coefficient is more general than simple linear 
correlation coefficient. By setting α = 0.0, we end up with the 
simple linear correlation coefficient. We calculated Pearson’s 
Correlation Coefficient (Equation (2)) of all pairs of gene and 
TF. The correlation coefficients indicate how tightly genes are 
up-regulated and down-regulated with respect to transcription 
factors. The values of Pearson’s Correlation Coefficient range 
from -1 to +1. Any value in positive scale indicates increasing 
correlationship, with +1 being perfectly linear correlated and 
negative values denote the case of a negative correlationship. 
Any value in between in all other cases represents the degree 
of dependency between the variables (i.e. gene and TF pair).  

 
3.3 Gene Ontology 

Genome-wide comparison has revealed that a large 
fraction of genes encoding the core biological processes and 
molecular functions are shared by all the eukaryotes, with a 
few exceptions[27]. In fact, comprehensive knowledge about 
biological roles of common gene products in diverse species 
can obviously explain, and often provide strong implication 
of, its function in the like genomes. However, due to 
divergent nomenclatures and interpretations of biological 
elements, it has been difficult for the researchers to talk in 
common language. To address this issue, the Gene Ontology 
(GO) Consortium[28] has been formed. Basically, Gene 
Ontology (GO) provides a great resource for describing gene 
products by standardizing biological concepts and by 



consolidating gene annotation information from 
heterogeneous data sources in a consistent manner. As a 
mainstay standard for facilitating annotation of gene products, 
it has been successfully used in unraveling protein-protein 
interactions and classifications in genomes, such as Homo 
sapiens, Saccharomyces cerevisiae, Drosophila 
melanogaster, Caenorhabditis elegans, Mus musculus, 
Arabidopsis thaliana.  

Gene Ontology (GO) Consortium has developed a 
database consisting of standardized, structured, dynamically 
controlled vocabularies (ontological) to encode various 
aspects of gene products in organisms[28]. The Gene 
Ontology (GO) is categorized into three orthogonal entities: 
(1) molecular function (MF) describes the role of a gene 
product in molecular level; (2) biological process (BP) 
outlines the processes (objectives) the gene products partake 
in; (3) cellular component (CC) refers to the cellular 
localization of the proteins where they are active. Each GO is 
represented as a directed acyclic graph (DAG), in which each 
term is either a child of one or multiple parents (“is-a” 
relationship) or a constituent instance (“part-of” relationship) 
of the parent terms. In the graph, the nodes correspond to the 
GO terms, while edges denote the relationships among the 
terms. Depending on the depth (level) of a node, we can 
determine the specificity of the term. The closer to the root a 
term is, the more general the term is. Conversely, if it is 
located in the leaf levels, the term is the most specific with 
respect to that particular ontology.  

 
3.4 Functional enrichment measure 

Although semantic similarity based methods are 
popular in assessing functional similarity among the gene 
products, there are a number of drawbacks we need to 
consider. First of all, different methods treat the commonality 
(a.k.a. generality and specificity) of nearest common 
ancestors in different ways. Secondly, in the GO graph, the 
depth of terms does not actually signify the specificity of the 
corresponding concepts. Different terms in the same rank 
(depth) are necessarily not equally specific. Finally, as the GO 
is a continuing project where new vocabularies are constantly 
added (updated), therefore very often the similarity measures 
are subject to change. 

Regarding all these issues, we attempt to define a 
similarity metric based on assigned GO terms to a gene 
product instead of concerning much about frequently 
changing GO semantic structure. Again, as we are interested 
in clustering functionally related genes on the basis of their 
GO terms, our distance measure provides straightforward 
approach to group them together. The idea behind our metric 
definition is that the more genes have common (general) GO 
terms, and the less they have specific GO terms, the more 
likely they tend to be functionally related. Our distance 
measure is based on the Czekanowski-Dice formula (see 
Equation 3). 

Let two sets of GO terms of annotated genes G1 and 
G2 be  and },....,,,{ mgogogogoGO 11312111 =

},....,,,{ ngogogogoGO 22322212 =  in order.  
According to our algorithm, the distance measure between G1 
and G2: 
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The closer the genes are in respect with biological 
function, the lesser the distance measure ( ) is. In 
our analysis, we label this distance measure as functional 
enrichment score. This distance formula weighs more on the 
significance of the common GO terms by giving more 
emphasis to similarities than to dissimilarities. Thus, if two 
gene products do not share any GO terms, the distance value 
would be one (1), the highest possible value, while for two 
gene products sharing exactly the identical set of GO terms, 
the distance value is zero (0), which is the lowest possible 
value.  

),( 21 GG

3.5 Finding cis-regulatory elements 
To determine the (putative) cis-regulatory elements, 

we identify associated genes with certain TF with correlation 
co-efficient greater that a threshold (>0.5). Using functional 
enrichment analysis, we construct cluster of genes that are 
functionally related to certain transcription factor. After 
calculating the distance measures (functional enrichment 
scores) of the respective TF against rest of the genes, we sort 
them by enrichment score in ascending order (genes with less 
score at the top). For further analysis, we selected top ten 
genes from this list, which include genes that are functionally 
enriched with corresponding TF (enrichment score < 1.0) with 
moderately high correlation coefficient (~>0.60).   

Transcriptional regulatory elements are found either 
upstream or downstream of genes, scattered all along 
thousands of bps in both intergenic and intragenic regions. 
However, most TFBS predictors tend to focus in the proximal 
promoter region[3] because the difficulty of TFBS prediction 
tends to increase with the size of the region of interest. 
Besides, increasing the region of interest upstream of the 
transcription start site to more than a few thousand base pairs 
increases the chances of falsely identifying common repeat 
elements. This, we focus on the core promoter regions from 
1500 bps upstream to 500 bps downstream (-1500 to +500, 
total 2000 bps) and extracted the nucleotide sequences for the 
genes as FASTA format. 

To ensure that our putative TF binding sites are of high 
quality, we validated them with TRANSFAC database[15], 
which is the largest repository for experimentally derived 
(validated) TFBS. We also performed further corroboration of 
our putative sites using P-Match[29]-public (which is a 
TRANSFAC subsidiary) and ConSite[30], which combines 
pattern matching and weight matrix approaches thus 
providing higher accuracy of recognition than each of the 
methods alone. To reduce false-positive validation using P-
match, we chose “high quality vertebrate matrices only” as 
our default option. We obtained the report for all pre-selected 



genes, setting cut-off selection for matrices to minimize (1) 
false-positive, (2) false-negative, and (3) the sum of both error 
rates. Moreover, ConSite[30] is  a user-friendly, web-based 

tool for finding cis-regulatory elements in genomic sequences 
using high-quality transcription factor models and cross-
species comparison filtering.  
 

Table 1: The list of identified binding sites for E2F5 and RELB TFs. Results were validated using both 
TRANSFAC and ConSite. 

E2F5 (TRANSFAC: E2F, ConSite: E2F) 

 
 

Genes 
Correlation 
Coefficient 

Functional enrichment 
score 

Position in 
sequence 
(strand) 

Consensus 
sequence 

MBD4 0.82118 0.76 942 (+) TTTGCcgc 
DCK 0.79218 0.904 1496 (-) gcgCCAAA 

MCM6 0.78034 0.629 1347 (+) TTTGGcgc 
MYBL1 0.76635 0.538 N/A N/A 

DR1 0.76331 0.578 N/A N/A 
LSM6 0.75098 0.739 1755 (-) ccgCGAAA 
EZH2 0.74767 0.583 1533 (+) TTTGGcgc 
PCNA 0.73964 0.769 1442 (-) gcgGGAAA 

HMGB2 0.69681 0.75 336 (+) TTTGGcgc 
NMI 0.61465 0.733 1553 (+) TTTCGcgg 

 
 
 

 RELB (TRANSFAC: c-REL, ConSite: c-Rel) 

 
 

Genes 
Correlation 
Coefficient 

Functional enrichment 
score 

Position in 
sequence 
(strand) 

Consensus 
sequence 

PSMB9 0.91903 0.833 1107 (-) GGAAAgtccc 
COX7B 0.80250 0.76 N/A N/A 
ZFP106 0.76718 0.913 1343 (-) GGAATcctca 

ARHGAP5 0.76682 0.909 1884 (+) gggtgCTTTC 
NFE2L1 0.74318 0.619 641 (-) GAAACatccc 

MAPKAPK3 0.73573 0.904 197 (-) TGTAGcaccc 
RYR2 0.72470 0.8 549 (-) GGAATgctcg 

DNAJB6 0.71556 0.809 137 (+) gggatTTTTC 
ARF1 0.71359 0.933 256 (+) ggggcTTTCC 
IRF2 0.70548 0.474 1468 (+) ggggaTTTCC 

 
 
 
 
 
 



4   Results and Discussion 
 As a case study, we selected E2F5 and RELB for our 

candidate TF.  We screened out genes that are functionally 
enriched with these TFs. In order to quantify the regulatory 
elements along these gene sequences, the core promoter 
regions (see Methods) were fed to P-Match[29] using all three 
available options for handling false discoveries. Basically, the 
output with option “minimizing false negative” considers 
merely minimal number of base pairs match and calls it a hit. 
Thus it improves its recall numbers (maximize loose-bound 
relevance at the cost of precision), with a huge list of cis-
element candidates. We expect the false-positive rate to be 
extremely high for the predictions to be meaningful. 
Therefore, we did not discard this option. Among the other 
options, “minimize false positive” tries to find exact (~100%) 
PWM match and accounts for the most precise TF hits. The 
other option “minimize sum of both error rates” seems to take 
advantage from the best of both worlds (keeping balance on 
both recall and precision) and evens out high false discovery 
rates. To ensure better quality of our analysis, we considered 
only the option “minimize false positive”, which maximizes 
the precision values without compromising too much with 
recall values.  We summarize the sample results for E2F5 and 
RELB genes in Table 1. The results for consulting ConSite are 
furnished as well. The consensus sequences (Logo-plots[31]) 
for respective TFBS were extracted from TFM-Explorer[11]. 

Our predictions for cis-elements for these two TFs 
are highly accurate. Out of the ten human genes that are 
associated with E2F5 (E2F transcription factor 5), a member 
of E2F TF family, eight genes (80% hit rate) carry the 
supposed binding sites precisely (negative strands are give as 
reverse complemented. Comparing the sequence patterns of 
binding sites, we can say that almost all of them share the 
consensus sequence ‘TTTSSCGC’ where S could be a C or 
G. Likewise, for the ten human genes functionally correlated 
with TF RELB, we have found nine genes have the consensus 
sequence for RELB binding sites, which achieves a hit rate of 
~90%. Here, we found “TTTCC” as sense (+), or “GGAAA” 
as anti-sense (-) complementary, to be common motif with a 
number of out of pattern nucleotides around.  

. 
5  Conclusions  

In short, we propose a computational method to 
identify putative transcriptional regulatory elements by 
analyzing functional enrichment using gene ontology. 
Although there are a lot of computational techniques for this 
purpose, it is not possible to extend those from motif finding 
in lower prokaryotes to that in mammals. These techniques 
also tend to show higher false discovery rates. We 
demonstrated that the use of our similarity (distance) metric 
can group genes based on enrichment score and it strengthens 
the findings from gene expression profile analysis. In each 
group genes are functionally related to the corresponding TFs; 
so searching for functional modules along the promoters of 
genes is more appropriate for capturing possible regulatory 
relationship. Finally, we validate our prediction for cis-

regulatory motifs in both genomes using TRANSFAC. As a 
possible further step to confirm the regulatory relationships, 
the TF-gene pairs and their functional enrichment constructed 
here may serve as a reference of additional evidence for ChIP-
chip results. 
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