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Abstract - Data with missing sample-values are quite 
common in many microarray expression profiles. The 
outcome of the analysis of these microarray data mostly 
depends on the quality of underlying data. In fact, without 
complete data, most computational approaches fail to deliver 
the expected performance. So, filling out missing values in the 
microarray, if any, is a prerequisite for successful data 
analysis. In this paper, we propose an Expectation-
Maximization (EM) inspired approach that handles a 
substantial amount of missing values with the objective of 
improving imputation accuracy. Here, each missing sample-
value is iteratively filled out using an updater (predictor) 
constructed from the known values and predicted values from 
the previous iteration. We demonstrate that our approach 
significantly outperforms some standard methods in terms of 
treating missing values, and shows robustness in increasing 
levels of missing rates. 
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1 Introduction 
Since the last decade, microarray technology has 

been applied as one of the widely used tools for gene 
expression profiling across various experimental conditions 
[1]. It generates enormous amounts of data that can be 
visualized and analyzed by computational tools.  As a 
precondition for effective data analysis, microarray profiling 
data need to be preprocessed to ensure superior data quality. 
Due to intrinsic experimental settings and erroneous 
hybridization processes, very often microarray data contain 
missing values (probes), which deteriorate the subsequent 
analysis significantly. Studies found that on an average a 
microarray dataset contains ~5% missing values, and ~60% of 
the genes typically have at least one feature (sample) value 
missing [2]. Nevertheless, several data analysis algorithms, 
namely principal component analysis (PCA) [3], support 
vector machines (SVM) [4-6], singular value decomposition 

(SVD) [7], artificial neural network (ANN) [8] etc., require 
fairly complete datasets to perform stably. In addition, 
unsupervised clustering (e.g. hierarchical clustering[9]) 
suffers from missing values while constructing clusters using 
distance measures. Moreover, because of higher expenses, 
sometimes replications of experiments are not often feasible. 
In order to ensure better analysis, incomplete microarray data 
are required to be preprocessed and reasonably complete.  

In this paper, we propose an iterative technique to 
handle missing values in microarray data. Our method is 
inspired by the EM (Expectation Maximization) algorithm, 
which is widely used for missing value imputation in data 
preprocessing. In our algorithm, we try to implement an 
updater which will eventually estimate the most appropriate 
values replacing the imputed values in the preceding 
iterations. Unlike other methods, our technique can estimate 
the unknown values in the dataset and fill out the entries in 
the single dataset without incorporating “reference datasets”. 
Empirically, we tested our method on six publicly available 
Saccharomyces cerevisiae (Yeast) microarray datasets and 
evaluated the performance measures. Our findings outperform 
other existing techniques considerably and tend to be quite 
robust in higher missing rates.   
 
2    Related works 

As we know, microarray is a large matrix of 
expression levels of genes (rows) under differential 
experimental conditions/derived from various samples 
(columns). The general hypothesis behind estimating missing 
values for microarray is to capture the inherent association 
among the underlying rows and columns, and infer new 
values for the missing ones taking this relationship into 
account as a whole. To preserve better correlations among the 
data values, sometimes gene expressions with missing values 
are discarded from further considerations. But it might not be 
an option if the most of the gene expressions have some of 
their values missing. Another simple way to deal with missing 
values is to impute average gene expression over the row 
[10]. Besides these, Troyanskaya et al. [11] proposed a 



estimation method based on singular value decomposition 
(SVDimpute) [11]. Another Bayesian principal component 
analysis (BPCA) [12] based imputation algorithm was 
presented by Oba et al. [12], which assumes higher 
covariance among the gene expressions to estimate unknown 
values. These global imputation approaches are suitable for 
datasets with considerably large number of samples (~30) 
having strong global associations among them (e.g. 
temporal/time series datasets). On the other hand, there are 
quite a number of techniques for local missing value 
estimation. For example, k-nearest neighbor based 
KNNimpute [11], least square (LSImpute) [13], local least 
square (LLS) [14], etc. can handle relatively smaller datasets. 
To start with, these methods select neighborhood genes by 
Euclidean distance measures or Pearson’s Correlations as 
required. The next step involves predicting the missing vales 
based on selected genes’ expression pattern. Still, these 
methods are error prone due to noise and insufficient samples. 
One of the shortcomings of all these methods is to integrate 
multiple datasets from diverse sources and consolidate those 
for analysis. Combination of datasets without proper 
relevance may critically degenerate the quality of 
neighborhood gene analysis, as pointed out for KNNimpute 
[12]. To this end, Tuikkala et al. [15] devised a gene ontology 
based technique GOImpute, which separates functionally 
related genes for further imputation. This method outperforms 
KNNimpute, but its performance is dependent on the 
availability of enough genes and accuracy of their 
annotations. Finally, we found another order statistics based 
approach called integrative Missing Value Estimation 
(iMISS) [16], which improves LSS algorithm and 
subsequently beats the GOImpute in terms of imputation 
accuracy. 

 
Table 1: Description of the test datasets                      

(Datasets denoted with (*) are time series) 
   

Dataset No of 
genes/ 

instance
s 

No. of 
samples/ 
attribute 

Description 

Diauxic* 5289 7 Metabolic transition 
from fermentation to 

respiration 
Adaptive 3685 4 Evolutionary 

adaptability 
Phosphate 5257 8 Polyphosphate 

metabolism 
Alpha-
factor* 

4053 18 

Elutriation
* 

5192 14 

CDC15* 4833 13 

 
Yeast Cell cycle-

regulation 

 
 
 
 
 

3  Methods and materials 
3.1   Description of datasets used 

To test our algorithms, we collected microarray 
profile data of Saccharomyces cerevisiae (Yeast) from the 
Princeton Saccharomyces Genome Database SGD Lite 
(http://sgdlite.princeton.edu/), a publicly accessible yeast 
microarray data repository. Our datasets are composed of both 
time series and non-time series data. The first dataset 
(Diauxic) we selected is a time series, spotted cDNA 
microarray gene expression profiles dealing with metabolic 
shift from fermentation to respiration in yeast [17]. The 
second dataset (Adaptive) is on the study of adaptability of 
yeast and their differential gene expressions under diverse 
stress conditions[18]. Another dataset (Phosphate) reports the 
resulting gene expressions for phosphate accumulation and 
polyphosphate metabolism [19]. The rest of the datasets 
(Alpha-factor, Elutriation, CDC15) were created from 
Spellman time series cell-cycle datasets [20] based on the 
methods used for yeast cultures. These three datasets are all 
temporal and comprise higher sample dimensions. The 
characteristics of the datasets used are furnished in Table 1. 

 
3.2   The Expectation-Maximization (EM) 
Algorithm 

A popular way of dealing with missing values is to 
use the Expectation-Maximization (EM) algorithm introduced 
by Dempster, Laird and Rubin [21]. Here, the data source is 
assumed to be from a certain (mixture of) parametric 
model(s). EM algorithm tends to perform very well in 
parameter estimation. EM iteratively performs the following 
two steps. 
 
Estimation (E) step: Estimate the parameters in the 
probabilistic model for the data source by using the known 
attribute-values and estimates of the missing attribute values 
obtained in the previous iteration of the M-step. 
 
Maximization (M) step: Fill in the missing values to 
maximize the likelihood function that is refined in the E-step. 

 
There are two drawbacks in using EM algorithm to 

fill up missing values. Firstly, it assumes that the data source 
comes from some parametric model (or a mixture of 
parametric models) with a finite mixture of Gaussian (k-
Gaussians) being the most commonly used. Due to this 
assumption, most EM applications are applicable to numerical 
attributes only. Secondly, while EM can be proved to 
converge (with the appropriate parametric model assumption), 
the convergence process tends to be extremely slow. In 
particular, EM algorithm is useful when maximum likelihood 
estimation of a complete data model is relatively easy. 
Ouyang et al. [22] showed the use of microarray data for 
Gaussian mixture clustering and imputation. This research 
originated when we tried to investigate whether imputation 
accuracy can be improved by using EM algorithm in filling up 

http://sgdlite.princeton.edu/


missing numerical attribute-values, which is literally 
appropriate for microarray data. 

 
 

 
 
 

Figure 1: Pseudo code of our algorithm, EMMA. 
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Figure 1: Pseudo code of our algorithm, EMMA. 

 

3.3  Our iterative technique for handling 
missing values 
 Instead of using common parametric models, we assume 
that the value of each attribute is somehow dependent on the 
values of the other attributes, which can be captured to a 
certain extent by simple linear regressor. In fact, this 
assumption is quite rational for analyzing microarray data 
derived from particular stand-alone (not distributed) 
experiment, be it temporal or not. 

 Inspired by EM approach, we propose an iterative 
algorithm, which is EMMA (EM on MicroArray) by the 
name.  In the E-step, we build a linear regressor, which we 
call updater Hi, for each attribute xi using the other attributes 
as input. In the M-step, we update the predicted value of 
those attributes based on these models constructed in the E-
step as shown in Figure 1. The refined values are then used in 
the subsequent iterations to construct the updaters. Initially, if 
the sample value is missing, we use the mean values for first 
imputation. Because of the property of convergence at local 
maximum (saddle point) of EM algorithm, we need to start up 
with somewhat known (filled out) values. That is why we 
initiate with mean value imputation for the missing ones. 

 We continue this process iteratively until a certain 
number of iterations is reached or the attributes cease to 

change much. The rate of refinement of certain sample value 
is moderated by the parameter η (eta). Our experiment sets η 
to 1.0 (specified by ηmissing) for attributes (samples) with 
missing values, as they can be replaced with completely new 
values. On the other hand, η was valued at 0.0 (specified by 
ηknown) for attributes (samples) without missing values to 
restrict drastic changes of values over iterations. These values 
of η are not fully optimized in order to prevent overfitting. 
Besides, we obtained outperforming results using these non-
optimized parameters, and also values of η may be fine-tuned 
for better yields. 

EMMA (ηknown, ηmissing) 
 
//Here ηknown = 0.0, ηmissing = 1.0, Hi =Linear Regressor   
 
Initialize: 

Fill the missing values using its mean (for 
continuous values). 

 
Update: 

Repeat the following two steps until convergence 
(k iterations). 
E-step

 

3.4   Experimental settings 
: 

for each attribute xi do 
Construct an updater Hi for xi. 

M-step: 
for each attribute xi do 
      if xi’s value was missing then 
    η   ηmissing  
      else 

  η   ηknown  
 
xi   η Hi(x) + (1 − η) xi 

Output: 
The final updaters for filling in the missing 

values. 

To construct test datasets, we removed the gene with 
missing values from these datasets, so that we can calculate 
the accuracy of missing value imputations more precisely.  
The experiments use source code from the machine learning 
software WEKA[23]. Missing values are artificially added to 
the data sets to simulate randomized missing values. To 
introduce m% missing values per attribute xi in a data set of 
size n, we randomly selected mn instances and replaced its xi-
value with an “unknown” (In WEKA, missing values are 
denoted as ‘?’) label. Missing values were added in the 
original data sets from which both training data sets and test 
data sets were generated. In each set of experiment, we used 
increasing levels of ‘missingness’ - missing rate: m = 1%, 5%, 
10%, 20%, 25%, and 50%. We find that often at m≥10%, the 
majority of the instances (genes) have some missing values, 
while at m≥25%, all instances (genes) have some missing 
values. Moreover, as ours is an iterative approach, we 
recorded the performance metrics at increasing number of 
iterations, T = 1, 2, 5, 10, 15, 20, 25, 50 respectively. 

 
3.5    Performance Evaluation 

In order to validate the efficacy of our imputation 
method, we used Root Mean Squared Error (RMSE)[24, 25] 
(See Equation 1) performance metric, which estimates the 
relative closeness of the predicted and actual values. To 
minimize the variances in the RMSE measures, we created as 
many as ten datasets at same missing level (m%), and finally 
took average of all ten performance figures. There are other 
formulations of RMSE than that in Equation 1. The reason 
why we choose this expression because in the ideal case (null 
imputation algorithm), this RMSE measure will stand out as 
zero (null). This ensures that we can use this metric to 
compare same datasets using various algorithms. The closer 
the predicted (estimated) values to the actual values, the lesser 
the RMSE values are, resulting in the values of RMSE ~ 0.0 
for almost correct prediction.  
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Table 2: RMSE measures of six datasets at different iterations for different missing rates (m%) 

 
Missing rate (m) 1% 5% 10% 20% 25% 50% 
# of Iterations (T) Diauxic 

1 0.05617 0.12377 0.18004 0.26307 0.30318 0.45581 
2 0.05598 0.12312 0.17718 0.25392 0.29049 0.42738 
5 0.05591 0.12305 0.17669 0.25264 0.28854 0.43352 

10 0.05590 0.12307 0.17679 0.25288 0.28897 0.45119 
20 0.05590 0.12307 0.17681 0.25296 0.28914 0.45561 
50 0.05590 0.12307 0.17681 0.25296 0.28915 0.45695 

 Adaptive 
1 0.06932 0.15188 0.21863 0.31998 0.35122 0.50188 
2 0.06924 0.15117 0.21685 0.31247 0.34323 0.48526 
5 0.06922 0.15112 0.21699 0.31202 0.34435 0.49516 

10 0.06921 0.15112 0.21700 0.31203 0.34454 0.50235 
20 0.06921 0.15112 0.21700 0.31203 0.34454 0.50522 
50 0.06921 0.15112 0.21700 0.31203 0.34454 0.50554 

 Phosphate 
1 0.07581 0.16862 0.23738 0.33168 0.37086 0.51028 
2 0.07585 0.16858 0.23661 0.32842 0.36520 0.49984 
5 0.07588 0.16864 0.23704 0.32938 0.36700 0.52675 

10 0.07588 0.16864 0.23713 0.32951 0.36745 0.55547 
20 0.07588 0.16864 0.23714 0.32952 0.36748 0.56368 
50 0.07588 0.16864 0.23714 0.32952 0.36748 0.56678 

 CDC15 
1 0.06420 0.15783 0.22104 0.31270 0.35536 0.51542 
2 0.06374 0.15700 0.21827 0.30564 0.34639 0.49566 
5 0.06370 0.15689 0.21771 0.30640 0.34725 0.52152 

10 0.06370 0.15689 0.21767 0.30644 0.34780 0.55042 
20 0.06370 0.15689 0.21767 0.30638 0.34780 0.55335 
50 0.06370 0.15689 0.21767 0.30637 0.34779 0.56756 

 Alpha-Factor 
1 0.04435 0.11903 0.19110 0.29814 0.34277 0.50708 
2 0.04814 0.11370 0.18466 0.29244 0.33753 0.50076 
5 0.04720 0.11530 0.18688 0.29501 0.34183 0.50746 

10 0.04750 0.11553 0.18666 0.29532 0.33986 0.51684 
20 0.04718 0.11592 0.18554 0.29375 0.33845 0.52423 
50 0.04699 0.11596 0.18471 0.29380 0.33879 0.53709 

 Elutriation 
1 0.05573 0.11865 0.17985 0.27823 0.31824 0.48531 
2 0.05529 0.11899 0.17841 0.27091 0.30842 0.46726 
5 0.05528 0.12042 0.17588 0.27105 0.31368 0.47391 

10 0.05528 0.11941 0.17756 0.27294 0.31711 0.47882 
20 0.05528 0.11949 0.17623 0.27251 0.31790 0.47941 
50 0.05528 0.11923 0.17573 0.27300 0.31804 0.48761 

 

4   Results and Discussion 
 As we mentioned before, we took the performance 

measures (in RMSE) at different iteration counts for 
increasing missing value levels. The findings are reported in 
the Table 2. Because EMMA is based on an iterative 
approach, we observed the change of accuracy with the 
number of iterations the underlying updater Hi is called upon 

for imputation. For almost all cases, it seems that RMSE is 
higher at the very first turn, and lessens within a few iterations 
(T = ~2-5). These values remain fairly steady throughout 
higher iterations (T >10). This happens due to the property of 
the regressor we used. Basically, linear regressor here tends to 
fit the data points within first few runs, and adjusted regressor 
does not rectify too much in the following turns. Moreover, 
the RMSE values across different missing rates remain 



relatively robust, and do not swing erratically with the 
proportion of missing values induced in the datasets. For 
example, the RMSE counts for Diauxic dataset (T = 10) are 
0.05590, 0.15112, 0.12307, 0.17679, 0.25288, 0.28897, 
0.45119 at the missing rate of 1%, 5%, 10%, 20%, 25%, 50% 
respectively. As expected, as the missing rate increases, the 
performance of our technique deteriorates (see Table 2), but 
the degree of imputation accuracy does not fall as much as the 
magnitude of missing rates. This suggests that our algorithm 
can handle higher number of missing values efficiently.  
To evaluate the performance of our method comparing to 
other extant methods, we obtained the RMSE numbers of 
those methods on the same datasets. As reported by Hu et 
al.[16], for Diauxic, Adaptive and Phosphate dataset, the 
RMSE measures (10% missing rate) of KNNimpute [11] and  
LLS based method [14] are ~0.6-0.8; while their integrative 
approach improved those numbers by decreasing almost 
~0.05. On the other hand, the error numbers for our algorithm 
at the same settings are in the range of ~0.17-0.24 (T = 10), 
which is an improvement over the aforementioned methods 
by a significant margin. Besides, we maintain a competitive 
edge against these methods at higher missing rates (See 
Figure 2~4). 

For a dataset with m rows (genes), n columns 
(samples) and k iterations, the computational complexity of 
our algorithm is approximately O(mn2k). So the running time 
scales up with the dimensions of the data matrix for the 
microarray. Instead of using linear regressor, we can also use 
any other hypothesis that can handle numeric class values 
(e.g. decision stump, multi-layer perceptrons, etc.). 
     All the datasets we used here were originated from 
same experiments using common microarray platform 
(spotted cDNA microarray). One of the advantages of our 
method is we do not need to integrate expression profiles 
from different experimental settings (cDNA vs. Affymetrix). 
Still, the performance of our algorithm depends on the 
variance of the datasets. Also, to infer linear regression, the 
dataset has to contain enough attributes (columns) to fit on the 
hypothesis. 

 

Figure 2: Comparison of performances for KNN, LSS, 
iLSS and EMMA for Diauxic dataset 

 
Figure 3: Comparison of performances for KNN, LSS, 

iLSS and EMMA for Adaptive dataset 
 
 
 

 
Figure 4: Comparison of performances for KNN, LSS, 

iLSS and EMMA for Phosphate dataset 
 
5  Conclusions  

To summarize, we present a novel method for 
treating missing sample values of genes in microarray data. 
Our technique is based on popular EM algorithm, and it far 
surpasses other existing state-of-the-art techniques in terms of 
imputation accuracy. In fact, being iterative in nature, our 
algorithm successfully grasps the innate relationships among 
the samples in subsequent runs, and stabilizes after the 
imputed and known values converge at some point.  We 



validated the strength of our algorithm by applying it to 
estimate missing values in both temporal and non-temporal 
benchmark datasets. In future, we expect to extend this 
technique to handle noise in microarray data in the 
preprocessing step. 
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