
EMMA: An EM-based Imputation Technique for
Handling Missing Sample-Values in Microarray

Expression Profiles.

Amitava Karmaker1*, Edward A. Salinas2, Stephen Kwek3

1University of Wisconsin-Stout, Menomonie, Wisconsin 54751, USA

2Johns Hopkins University, Baltimore, Maryland 21218, USA
3Microsoft Corporation, Redmond, Washington 98052, USA

*Corresponding author

Abstract - Data with missing sample-values are quite
common in many microarray expression profiles. The
outcome of the analysis of these microarray data mostly
depends on the quality of underlying data. In fact, without
complete data, most computational approaches fail to deliver
the expected performance. So, filling out missing values in the
microarray, if any, is a prerequisite for successful data
analysis. In this paper, we propose an Expectation-
Maximization (EM) inspired approach that handles a
substantial amount of missing values with the objective of
improving imputation accuracy. Here, each missing sample-
value is iteratively filled out using an updater (predictor)
constructed from the known values and predicted values from
the previous iteration. We demonstrate that our approach
significantly outperforms some standard methods in terms of
treating missing values, and shows robustness in increasing
levels of missing rates.

Keywords: Microarray, Biological Data Mining, Missing
Sample Value Estimation, EM Algorithm.

1 Introduction
Since the last decade, microarray technology has

been applied as one of the widely used tools for gene
expression profiling across various experimental conditions
[1]. It generates enormous amounts of data that can be
visualized and analyzed by computational tools. As a
precondition for effective data analysis, microarray profiling
data need to be preprocessed to ensure superior data quality.
Due to intrinsic experimental settings and erroneous
hybridization processes, very often microarray data contain
missing values (probes), which deteriorate the subsequent
analysis significantly. Studies found that on an average a
microarray dataset contains ~5% missing values, and ~60% of
the genes typically have at least one feature (sample) value
missing [2]. Nevertheless, several data analysis algorithms,
namely principal component analysis (PCA) [3], support
vector machines (SVM) [4-6], singular value decomposition

(SVD) [7], artificial neural network (ANN) [8] etc., require
fairly complete datasets to perform stably. In addition,
unsupervised clustering (e.g. hierarchical clustering[9])
suffers from missing values while constructing clusters using
distance measures. Moreover, because of higher expenses,
sometimes replications of experiments are not often feasible.
In order to ensure better analysis, incomplete microarray data
are required to be preprocessed and reasonably complete.

In this paper, we propose an iterative technique to
handle missing values in microarray data. Our method is
inspired by the EM (Expectation Maximization) algorithm,
which is widely used for missing value imputation in data
preprocessing. In our algorithm, we try to implement an
updater which will eventually estimate the most appropriate
values replacing the imputed values in the preceding
iterations. Unlike other methods, our technique can estimate
the unknown values in the dataset and fill out the entries in
the single dataset without incorporating “reference datasets”.
Empirically, we tested our method on six publicly available
Saccharomyces cerevisiae (Yeast) microarray datasets and
evaluated the performance measures. Our findings outperform
other existing techniques considerably and tend to be quite
robust in higher missing rates.

2 Related works

As we know, microarray is a large matrix of
expression levels of genes (rows) under differential
experimental conditions/derived from various samples
(columns). The general hypothesis behind estimating missing
values for microarray is to capture the inherent association
among the underlying rows and columns, and infer new
values for the missing ones taking this relationship into
account as a whole. To preserve better correlations among the
data values, sometimes gene expressions with missing values
are discarded from further considerations. But it might not be
an option if the most of the gene expressions have some of
their values missing. Another simple way to deal with missing
values is to impute average gene expression over the row
[10]. Besides these, Troyanskaya et al. [11] proposed a

estimation method based on singular value decomposition
(SVDimpute) [11]. Another Bayesian principal component
analysis (BPCA) [12] based imputation algorithm was
presented by Oba et al. [12], which assumes higher
covariance among the gene expressions to estimate unknown
values. These global imputation approaches are suitable for
datasets with considerably large number of samples (~30)
having strong global associations among them (e.g.
temporal/time series datasets). On the other hand, there are
quite a number of techniques for local missing value
estimation. For example, k-nearest neighbor based
KNNimpute [11], least square (LSImpute) [13], local least
square (LLS) [14], etc. can handle relatively smaller datasets.
To start with, these methods select neighborhood genes by
Euclidean distance measures or Pearson’s Correlations as
required. The next step involves predicting the missing vales
based on selected genes’ expression pattern. Still, these
methods are error prone due to noise and insufficient samples.
One of the shortcomings of all these methods is to integrate
multiple datasets from diverse sources and consolidate those
for analysis. Combination of datasets without proper
relevance may critically degenerate the quality of
neighborhood gene analysis, as pointed out for KNNimpute
[12]. To this end, Tuikkala et al. [15] devised a gene ontology
based technique GOImpute, which separates functionally
related genes for further imputation. This method outperforms
KNNimpute, but its performance is dependent on the
availability of enough genes and accuracy of their
annotations. Finally, we found another order statistics based
approach called integrative Missing Value Estimation
(iMISS) [16], which improves LSS algorithm and
subsequently beats the GOImpute in terms of imputation
accuracy.

Table 1: Description of the test datasets

(Datasets denoted with (*) are time series)

Dataset No of
genes/

instance
s

No. of
samples/
attribute

Description

Diauxic* 5289 7 Metabolic transition
from fermentation to

respiration
Adaptive 3685 4 Evolutionary

adaptability
Phosphate 5257 8 Polyphosphate

metabolism
Alpha-
factor*

4053 18

Elutriation
*

5192 14

CDC15* 4833 13

Yeast Cell cycle-

regulation

3 Methods and materials
3.1 Description of datasets used

To test our algorithms, we collected microarray
profile data of Saccharomyces cerevisiae (Yeast) from the
Princeton Saccharomyces Genome Database SGD Lite
(http://sgdlite.princeton.edu/), a publicly accessible yeast
microarray data repository. Our datasets are composed of both
time series and non-time series data. The first dataset
(Diauxic) we selected is a time series, spotted cDNA
microarray gene expression profiles dealing with metabolic
shift from fermentation to respiration in yeast [17]. The
second dataset (Adaptive) is on the study of adaptability of
yeast and their differential gene expressions under diverse
stress conditions[18]. Another dataset (Phosphate) reports the
resulting gene expressions for phosphate accumulation and
polyphosphate metabolism [19]. The rest of the datasets
(Alpha-factor, Elutriation, CDC15) were created from
Spellman time series cell-cycle datasets [20] based on the
methods used for yeast cultures. These three datasets are all
temporal and comprise higher sample dimensions. The
characteristics of the datasets used are furnished in Table 1.

3.2 The Expectation-Maximization (EM)
Algorithm

A popular way of dealing with missing values is to
use the Expectation-Maximization (EM) algorithm introduced
by Dempster, Laird and Rubin [21]. Here, the data source is
assumed to be from a certain (mixture of) parametric
model(s). EM algorithm tends to perform very well in
parameter estimation. EM iteratively performs the following
two steps.

Estimation (E) step: Estimate the parameters in the
probabilistic model for the data source by using the known
attribute-values and estimates of the missing attribute values
obtained in the previous iteration of the M-step.

Maximization (M) step: Fill in the missing values to
maximize the likelihood function that is refined in the E-step.

There are two drawbacks in using EM algorithm to

fill up missing values. Firstly, it assumes that the data source
comes from some parametric model (or a mixture of
parametric models) with a finite mixture of Gaussian (k-
Gaussians) being the most commonly used. Due to this
assumption, most EM applications are applicable to numerical
attributes only. Secondly, while EM can be proved to
converge (with the appropriate parametric model assumption),
the convergence process tends to be extremely slow. In
particular, EM algorithm is useful when maximum likelihood
estimation of a complete data model is relatively easy.
Ouyang et al. [22] showed the use of microarray data for
Gaussian mixture clustering and imputation. This research
originated when we tried to investigate whether imputation
accuracy can be improved by using EM algorithm in filling up

http://sgdlite.princeton.edu/

missing numerical attribute-values, which is literally
appropriate for microarray data.

Figure 1: Pseudo code of our algorithm, EMMA.

Instructions for authors

 An electronic copy of your full camera-ready paper
must be uploaded (in PDF format) to Publication Web site
before the announced deadline. Please follow the submission

Figure 1: Pseudo code of our algorithm, EMMA.

3.3 Our iterative technique for handling
missing values
 Instead of using common parametric models, we assume
that the value of each attribute is somehow dependent on the
values of the other attributes, which can be captured to a
certain extent by simple linear regressor. In fact, this
assumption is quite rational for analyzing microarray data
derived from particular stand-alone (not distributed)
experiment, be it temporal or not.

 Inspired by EM approach, we propose an iterative
algorithm, which is EMMA (EM on MicroArray) by the
name. In the E-step, we build a linear regressor, which we
call updater Hi, for each attribute xi using the other attributes
as input. In the M-step, we update the predicted value of
those attributes based on these models constructed in the E-
step as shown in Figure 1. The refined values are then used in
the subsequent iterations to construct the updaters. Initially, if
the sample value is missing, we use the mean values for first
imputation. Because of the property of convergence at local
maximum (saddle point) of EM algorithm, we need to start up
with somewhat known (filled out) values. That is why we
initiate with mean value imputation for the missing ones.

 We continue this process iteratively until a certain
number of iterations is reached or the attributes cease to

change much. The rate of refinement of certain sample value
is moderated by the parameter η (eta). Our experiment sets η
to 1.0 (specified by ηmissing) for attributes (samples) with
missing values, as they can be replaced with completely new
values. On the other hand, η was valued at 0.0 (specified by
ηknown) for attributes (samples) without missing values to
restrict drastic changes of values over iterations. These values
of η are not fully optimized in order to prevent overfitting.
Besides, we obtained outperforming results using these non-
optimized parameters, and also values of η may be fine-tuned
for better yields.

EMMA (ηknown, ηmissing)

//Here ηknown = 0.0, ηmissing = 1.0, Hi =Linear Regressor

Initialize:

Fill the missing values using its mean (for
continuous values).

Update:

Repeat the following two steps until convergence
(k iterations).
E-step

3.4 Experimental settings
:

for each attribute xi do
Construct an updater Hi for xi.

M-step:
for each attribute xi do
 if xi’s value was missing then
 η ηmissing
 else

 η ηknown

xi η Hi(x) + (1 − η) xi

Output:
The final updaters for filling in the missing

values.

To construct test datasets, we removed the gene with
missing values from these datasets, so that we can calculate
the accuracy of missing value imputations more precisely.
The experiments use source code from the machine learning
software WEKA[23]. Missing values are artificially added to
the data sets to simulate randomized missing values. To
introduce m% missing values per attribute xi in a data set of
size n, we randomly selected mn instances and replaced its xi-
value with an “unknown” (In WEKA, missing values are
denoted as ‘?’) label. Missing values were added in the
original data sets from which both training data sets and test
data sets were generated. In each set of experiment, we used
increasing levels of ‘missingness’ - missing rate: m = 1%, 5%,
10%, 20%, 25%, and 50%. We find that often at m≥10%, the
majority of the instances (genes) have some missing values,
while at m≥25%, all instances (genes) have some missing
values. Moreover, as ours is an iterative approach, we
recorded the performance metrics at increasing number of
iterations, T = 1, 2, 5, 10, 15, 20, 25, 50 respectively.

3.5 Performance Evaluation

In order to validate the efficacy of our imputation
method, we used Root Mean Squared Error (RMSE)[24, 25]
(See Equation 1) performance metric, which estimates the
relative closeness of the predicted and actual values. To
minimize the variances in the RMSE measures, we created as
many as ten datasets at same missing level (m%), and finally
took average of all ten performance figures. There are other
formulations of RMSE than that in Equation 1. The reason
why we choose this expression because in the ideal case (null
imputation algorithm), this RMSE measure will stand out as
zero (null). This ensures that we can use this metric to
compare same datasets using various algorithms. The closer
the predicted (estimated) values to the actual values, the lesser
the RMSE values are, resulting in the values of RMSE ~ 0.0
for almost correct prediction.

2

2

}{
}{

actual

actualpredicted

Ymean
YYmean

RMSE r

rr
−

= (1)

Table 2: RMSE measures of six datasets at different iterations for different missing rates (m%)

Missing rate (m) 1% 5% 10% 20% 25% 50%
of Iterations (T) Diauxic

1 0.05617 0.12377 0.18004 0.26307 0.30318 0.45581
2 0.05598 0.12312 0.17718 0.25392 0.29049 0.42738
5 0.05591 0.12305 0.17669 0.25264 0.28854 0.43352

10 0.05590 0.12307 0.17679 0.25288 0.28897 0.45119
20 0.05590 0.12307 0.17681 0.25296 0.28914 0.45561
50 0.05590 0.12307 0.17681 0.25296 0.28915 0.45695

 Adaptive
1 0.06932 0.15188 0.21863 0.31998 0.35122 0.50188
2 0.06924 0.15117 0.21685 0.31247 0.34323 0.48526
5 0.06922 0.15112 0.21699 0.31202 0.34435 0.49516

10 0.06921 0.15112 0.21700 0.31203 0.34454 0.50235
20 0.06921 0.15112 0.21700 0.31203 0.34454 0.50522
50 0.06921 0.15112 0.21700 0.31203 0.34454 0.50554

 Phosphate
1 0.07581 0.16862 0.23738 0.33168 0.37086 0.51028
2 0.07585 0.16858 0.23661 0.32842 0.36520 0.49984
5 0.07588 0.16864 0.23704 0.32938 0.36700 0.52675

10 0.07588 0.16864 0.23713 0.32951 0.36745 0.55547
20 0.07588 0.16864 0.23714 0.32952 0.36748 0.56368
50 0.07588 0.16864 0.23714 0.32952 0.36748 0.56678

 CDC15
1 0.06420 0.15783 0.22104 0.31270 0.35536 0.51542
2 0.06374 0.15700 0.21827 0.30564 0.34639 0.49566
5 0.06370 0.15689 0.21771 0.30640 0.34725 0.52152

10 0.06370 0.15689 0.21767 0.30644 0.34780 0.55042
20 0.06370 0.15689 0.21767 0.30638 0.34780 0.55335
50 0.06370 0.15689 0.21767 0.30637 0.34779 0.56756

 Alpha-Factor
1 0.04435 0.11903 0.19110 0.29814 0.34277 0.50708
2 0.04814 0.11370 0.18466 0.29244 0.33753 0.50076
5 0.04720 0.11530 0.18688 0.29501 0.34183 0.50746

10 0.04750 0.11553 0.18666 0.29532 0.33986 0.51684
20 0.04718 0.11592 0.18554 0.29375 0.33845 0.52423
50 0.04699 0.11596 0.18471 0.29380 0.33879 0.53709

 Elutriation
1 0.05573 0.11865 0.17985 0.27823 0.31824 0.48531
2 0.05529 0.11899 0.17841 0.27091 0.30842 0.46726
5 0.05528 0.12042 0.17588 0.27105 0.31368 0.47391

10 0.05528 0.11941 0.17756 0.27294 0.31711 0.47882
20 0.05528 0.11949 0.17623 0.27251 0.31790 0.47941
50 0.05528 0.11923 0.17573 0.27300 0.31804 0.48761

4 Results and Discussion
 As we mentioned before, we took the performance

measures (in RMSE) at different iteration counts for
increasing missing value levels. The findings are reported in
the Table 2. Because EMMA is based on an iterative
approach, we observed the change of accuracy with the
number of iterations the underlying updater Hi is called upon

for imputation. For almost all cases, it seems that RMSE is
higher at the very first turn, and lessens within a few iterations
(T = ~2-5). These values remain fairly steady throughout
higher iterations (T >10). This happens due to the property of
the regressor we used. Basically, linear regressor here tends to
fit the data points within first few runs, and adjusted regressor
does not rectify too much in the following turns. Moreover,
the RMSE values across different missing rates remain

relatively robust, and do not swing erratically with the
proportion of missing values induced in the datasets. For
example, the RMSE counts for Diauxic dataset (T = 10) are
0.05590, 0.15112, 0.12307, 0.17679, 0.25288, 0.28897,
0.45119 at the missing rate of 1%, 5%, 10%, 20%, 25%, 50%
respectively. As expected, as the missing rate increases, the
performance of our technique deteriorates (see Table 2), but
the degree of imputation accuracy does not fall as much as the
magnitude of missing rates. This suggests that our algorithm
can handle higher number of missing values efficiently.
To evaluate the performance of our method comparing to
other extant methods, we obtained the RMSE numbers of
those methods on the same datasets. As reported by Hu et
al.[16], for Diauxic, Adaptive and Phosphate dataset, the
RMSE measures (10% missing rate) of KNNimpute [11] and
LLS based method [14] are ~0.6-0.8; while their integrative
approach improved those numbers by decreasing almost
~0.05. On the other hand, the error numbers for our algorithm
at the same settings are in the range of ~0.17-0.24 (T = 10),
which is an improvement over the aforementioned methods
by a significant margin. Besides, we maintain a competitive
edge against these methods at higher missing rates (See
Figure 2~4).

For a dataset with m rows (genes), n columns
(samples) and k iterations, the computational complexity of
our algorithm is approximately O(mn2k). So the running time
scales up with the dimensions of the data matrix for the
microarray. Instead of using linear regressor, we can also use
any other hypothesis that can handle numeric class values
(e.g. decision stump, multi-layer perceptrons, etc.).
 All the datasets we used here were originated from
same experiments using common microarray platform
(spotted cDNA microarray). One of the advantages of our
method is we do not need to integrate expression profiles
from different experimental settings (cDNA vs. Affymetrix).
Still, the performance of our algorithm depends on the
variance of the datasets. Also, to infer linear regression, the
dataset has to contain enough attributes (columns) to fit on the
hypothesis.

Figure 2: Comparison of performances for KNN, LSS,
iLSS and EMMA for Diauxic dataset

Figure 3: Comparison of performances for KNN, LSS,

iLSS and EMMA for Adaptive dataset

Figure 4: Comparison of performances for KNN, LSS,

iLSS and EMMA for Phosphate dataset

5 Conclusions

To summarize, we present a novel method for
treating missing sample values of genes in microarray data.
Our technique is based on popular EM algorithm, and it far
surpasses other existing state-of-the-art techniques in terms of
imputation accuracy. In fact, being iterative in nature, our
algorithm successfully grasps the innate relationships among
the samples in subsequent runs, and stabilizes after the
imputed and known values converge at some point. We

validated the strength of our algorithm by applying it to
estimate missing values in both temporal and non-temporal
benchmark datasets. In future, we expect to extend this
technique to handle noise in microarray data in the
preprocessing step.

6 References

[1] D. B. Allison, et al., "Microarray data analysis: from

disarray to consolidation and consensus," Nat Rev
Genet, vol. 7, pp. 55-65, Jan 2006.

[2] A. G. de Brevern, et al., "Influence of microarrays
experiments missing values on the stability of gene
groups by hierarchical clustering," BMC
Bioinformatics, vol. 5, p. 114, Aug 23 2004.

[3] S. Raychaudhuri, et al., "Principal components
analysis to summarize microarray experiments:
application to sporulation time series," Pac Symp
Biocomput, pp. 455-66, 2000.

[4] V. Vapnik, "The Nature of Statistical Learning
Theory," vol. Springer-Verlag, New York, 1995.

[5] M. P. Brown, et al., "Knowledge-based analysis of
microarray gene expression data by using support
vector machines," Proc Natl Acad Sci U S A, vol. 97,
pp. 262-7, Jan 4 2000.

[6] G. Valentini, "Gene expression data analysis of
human lymphoma using support vector machines and
output coding ensembles," Artif Intell Med, vol. 26,
pp. 281-304, Nov 2002.

[7] O. Alter, et al., "Singular value decomposition for
genome-wide expression data processing and
modeling," Proc Natl Acad Sci U S A, vol. 97, pp.
10101-6, Aug 29 2000.

[8] J. Huang, et al., "Clustering gene expression pattern
and extracting relationship in gene network based on
artificial neural networks," J Biosci Bioeng, vol. 96,
pp. 421-8, 2003.

[9] M. B. Eisen, et al., "Cluster analysis and display of
genome-wide expression patterns," Proc Natl Acad
Sci U S A, vol. 95, pp. 14863-8, Dec 8 1998.

[10] A. A. Alizadeh, et al., "Distinct types of diffuse large
B-cell lymphoma identified by gene expression
profiling," Nature, vol. 403, pp. 503-11, Feb 3 2000.

[11] O. Troyanskaya, et al., "Missing value estimation
methods for DNA microarrays," Bioinformatics, vol.
17, pp. 520-5, Jun 2001.

[12] S. Oba, et al., "A Bayesian missing value estimation
method for gene expression profile data,"
Bioinformatics, vol. 19, pp. 2088-96, Nov 1 2003.

[13] T. H. Bo, et al., "LSimpute: accurate estimation of
missing values in microarray data with least squares
methods," Nucleic Acids Res, vol. 32, p. e34, 2004.

[14] H. Kim, et al., "Missing value estimation for DNA
microarray gene expression data: local least squares
imputation," Bioinformatics, vol. 21, pp. 187-98, Jan
15 2005.

[15] J. Tuikkala, et al., "Improving missing value
estimation in microarray data with gene ontology,"
Bioinformatics, vol. 22, pp. 566-72, Mar 1 2006.

[16] J. Hu, et al., "Integrative missing value estimation
for microarray data," BMC Bioinformatics, vol. 7, p.
449, 2006.

[17] J. L. DeRisi, et al., "Exploring the metabolic and
genetic control of gene expression on a genomic
scale," Science, vol. 278, pp. 680-6, Oct 24 1997.

[18] T. L. Ferea, et al., "Systematic changes in gene
expression patterns following adaptive evolution in
yeast," Proc Natl Acad Sci U S A, vol. 96, pp. 9721-
6, Aug 17 1999.

[19] N. Ogawa, et al., "New components of a system for
phosphate accumulation and polyphosphate
metabolism in Saccharomyces cerevisiae revealed by
genomic expression analysis," Mol Biol Cell, vol. 11,
pp. 4309-21, Dec 2000.

[20] P. T. Spellman, et al., "Comprehensive identification
of cell cycle-regulated genes of the yeast
Saccharomyces cerevisiae by microarray
hybridization," Mol Biol Cell, vol. 9, pp. 3273-97,
Dec 1998.

[21] A. P. Dempster, et al., "Maximum-likelihood from
Incomplete Data via the EM Algorithm," Journal of
the Royal Statistical Society, vol. B39, pp. 1-38,
1977.

[22] M. Ouyang, et al., "Gaussian mixture clustering and
imputation of microarray data," Bioinformatics, vol.
20, pp. 917-23, Apr 12 2004.

[23] E. Frank, et al., "Data mining in bioinformatics using
Weka," Bioinformatics, vol. 20, pp. 2479-81, Oct 12
2004.

[24] R. Jornsten, et al., "DNA microarray data imputation
and significance analysis of differential expression,"
Bioinformatics, vol. 21, pp. 4155-61, Nov 15 2005.

[25] R. Jornsten, et al., "A meta-data based method for
DNA microarray imputation," BMC Bioinformatics,
vol. 8, p. 109, 2007.

	1 Introduction

