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ABSTRACT obtained by PCA and FA are well known. For example, we know

i i ) ) that the factors are obtained up to a rotation indeternonatiCA is
In this paper, first we present A Matlab toolbox which gives th more complex because the criteria used to be optimized e 06n
possibility to simulate the data for testing the algorithsush as: gy adratic (Kullback-Leibler divergence) and use higheleosstatis-
Principal Component Analysis (PCA), Factor Analysis(FR)de-  tics (HOS) and non Gaussian probability laws. The corresiogn
pendent Component Analysis (ICA), Linear Discriminant A8&  5|qorithms are then more sophisticated. However the conprmp:
(LDA) and many other classification methods which can be usedties of independent components are that they are obtanéd a
in Data Reduction (DR), Data Visualization (DV), superdsend  permytation and scale factor indetermination. LDA can besizb
unsupervised classification of multivariate great dimemai bio-  greq as a particular supervised classification method wheleow
logical data. Then, we describe some biological experimegiated  ihe number of classes.
to studying the circadian cell cycles and cancer treatmenerey In this paper, in a first step, we present, very shortly, bu in
the biologists observe different kind of data such as th&tians  pifying way of forward and inverse problem, different niatiate
of temperature, activity, hormones, genes and protein®esns.  gata analysis tools. Then, we present a Matlab toolbox: teigee
These data are often complex: multivariate, great dimewsity, jitferent factors with different properties; to generalffedent data
heterogeneous, with missing data, and observed at diffs@n-  sets with linear or non linear dependencies; to add diftekizn of
pling rates. The classical methods of PCA, FA, ICA and LDA cangrrors; to apply different algorithms of PCA, FA, ICA, LDA, and
not directly handle these data. In this paper, we show hastdltil- 5 compare the obtained results. In a second step, we shoe som
box can help them to visualize, to analyse and to do clasBfft®  reliminary results for real data set obtained by biolagisorking
on these data and finally to extract some knowledge from them. o, circadian and cell cycle influence on cancer. This worlorsedin
Keywords: Data visualization, Dimensionality reduction, Princi- collaboration within the European project EraSysBio.
pal Component Analysis, Factor Analysis, Independent GBmp

nent Analysis, L.inear Discriminant AnaIySiS, Bayesianehea‘nce, 2. A UNIFYING PRESENTATION OF MULTIVARIATE
Sources separation, Inverse problems. DATA ANALYSIS METHODS THROUGH FORWARD AND
INVERSE MODELING

1. INTRODUCTION . . . .
PCA, FA, ICA and LDA are classical methods of dimensionality
reduction and data analysis. Due to the origin of these ndstho
there have been many different presentations and intatpes.
outliers data. To understand these data, first we need taligeu H€re, we present them in an unifying context of forward migge
them, but the great dimensionality of these data needs a R&ta and inversion. To dO_ thl_S, we start by _def|n|ng the fa(_:tﬁ(s) =
duction (DR) step. Principal Component Analysis (PCA), teac  L/1(t),-- -, fn ()] which is anN-dimensional vector of time series.
Analysis (FA), Independent Component Analysis (ICA) ander Herg, we.choosed time series due to our final apph(':atlon.e\.iew
Discriminant Analysis (LDA) methods are the main classieth-  the time index can be anything else, for example, just thexiraf
ods for analyzing high dimensional data [1, 2, 3, 4, 5, 6, B, &0]. experiments of a position on a line, in a plane or in space.
PCA, FA and ICA are mainly used for dimensionality reductioml In a first step, we assume that _the observet_j 4 »
LDA for supervised classification. Even if these methodsvee  [91(t); -~ ; g2 (t)] are obtained via a mixing (or loading) mattk
defined, still there exist different algorithms for theimptical us-  ©f dimensiong x N] through the forward model

In many biological experiments, we are always face to data se
which are heterogeneous, of great dimensionality with imjsand

age: PCA and FA are the most stable ones because they usatipiadr le

criteria and L2 norms (second order statistics in statbtiterpreta- £(t) — Forward @D g(t) = Af(t)+elt), t=1,---,T
tion and Gaussian hypothesis in probabilistic interpietétand so model A ’ T
they are very simple to implement. The characteristics efésults 1)

- . ) wheree represents the errors of modeling dfds the total number
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This work is a part of ERASYSBIO-C5Sys European Methods such as PCA, FA, ICA and LDA is to obtain the fagfor
project "Circadian and cell cycle clock systems in cancer” and the Ioading matriXd. Described as such, we see that this esti-
http://ww. er asysbi 0. net/i ndex. php?i ndex=272 mation problem is very ill-posed in the sense that we can findym



combinations of factors and loading matrix which can settkfs
model. In the following, we use this model to explain theeliénces
between PCA, FA, ICA and LDA. N

PCA and FA methods try to find uncorrelated factfr8ecause
correlation describes a linear dependence, the main asisunmip
then thatf has to be obtained through a linear combination of the

data: f( ) = Bg(t), where the matrixB is called separating (or -
demixing or deloading) matrix. W%WW%WMM
Inference |— A or B .J

g(t) — | PCA, FA, ICA ~ a) sourcesf b) observahong ¢) mixing matrix A

LDA, Bayes | — f(t) = Bg(t)

Here, we are not going to describe these algorithms which are’
described elsewhere in details [11, 12, 13, 14, 15], but weent a
Matlab toolbox in which we implemented all these methods.

3. PRESENTATION OF THE MATLAB SIMULATION

TOOLBOX
We have developed a menu driven simulation tool, which fathe o
main menu, the following steps: T e L s -
— Generation of different sources (factors) with differpmperties d) scatter-plot e) Scatter pIot Of f) mIXIng matrix

(Uniform, Gaussian, Mixture of Gaussian, ... , of sources observations presented in color
— Generation of different data sets with linear or nonlinéepen-
dencies,
— Addition of different kind of errors,
— Application of different algorithms of PCA, FA, ICA, LDA,..and
— Visualization and evaluation tools which give possipitib eval-
uate the performances of a given method or to compare thégesu
obtained by two different methods.

As tools to measure the performances of these methods, we prc
pose the following scheme:

4
. HA W
€ sl : T TR I BT
s e e ow owS— o

Forward f 2
F = |modeta | 7O —9 g) PCAfactorsf ) scatter plot of s
f againstf
Inference |— A Estimated .

g —|PCAFAICA| 7 —

LDA, Bayes A '

and then comparg with g, f with £, A with A, ...
As an example of using this simulation tool, we show here a,
complete set of figures detailing the different steps of tion and ,
inversion. Figure 1 shows an example of two sourgggenerated
via a mixture of two Gaussian model) and five datagsebtained via
a mixing matrix A and addition of some noiseusing the forward
modelg = A f + € and then the results obtained by FA and ICA. i
As a second example, we show in Figure 2 two sources gener- f againstf
ated via a mixture of two Gaussian model. We then again usesth
sources to generate the data and applied different metHdeiS A,
FA, ICA (without using the class information) and LDA withing
the class information.

As a third example, we show in Figure 3 two sources generateof the observations, f) color presentation of the mixing Rag)
via a mixture of two uniforms model. We then again used these P gnmag

sources to generate the data and applied different mettdeies,  PCA factorsf, h) scatter- plot off againstf, 1) representation of

FA, ICA (without using the class information) and LDA withing  the estimated mixing matrid, j) ICA factors £, K) scatter-plot of
the class information. f againstf, I) representation of the estimated mixing matAx

% 0w
o1

j) ICA factorsf k) scatter plot of I)Zl

Fig. 1. Simulation of 2 sourceg and 5 observationg with ' =
100 samples: a) sourcep, b) observationg, c) representation of
H1e mixing matrixA, d) scatter-plots of the sources, e) scatter-plots
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Fig. 2. Simulation of 2 sources (mixture of two Gaussian distribu-Fig. 3. Simulation of 2 sources (mixture of two uniform distribu-
tions) f and 3 observationg with " = 400 samples: a) sources tions) f and 3 observationg with 7' = 400 samples: a) sources

f. b) observationg, c) representation of the mixing matri&, d)

scatter-plots of the sources, e) scatter-plots of the whtens, f)
spatial structure of the 3 sources, g) PCA factﬁrsh) scatter-plot
of ;‘ againstf and i) spatial structure of the PCA fact(i’sj,k,l) the

same with FA, m,n,0) the same with ICA.

f, b) observationg, c) representation of the mixing matri&, d)
scatter-plots of the sources, e) scatter-plots of the ghtens, f)
spatial structure of the 3 sources, g) PCA factfrs) scatter-plot

of f againstf and i) spatial structure of the PCA fact(i’sj,k,l) the
same with FA, m,n,o0) the same with ICA.



4. APPLICATION ON REAL DATA For now, we just applied these methods directly on the tirne se

ries data without accounting for time structure which ispienpor-

As we mentioned, we developed these tools for analyzing some @nt. However, the results obtained seem to have some sanifi

ological data in relation with circadian cell cycle and axtin of ~ iImportance for biologists. Here, we assumed only two factdys

cancer tumors in the context of the European project ERASPSB W€ can see it seems that there is a need to increase the nufmber o

A great number of experimentations have been done on mice. A@Ctors.

an example, different quantities such as TemperatureyifGtdif-

ferent Hormones, different Genes expressions and difféhateins

are measured during one or a few days and one of the problems ad

dressed is finding the principal components or factors ofesoin

these data.

In Figure 4, we show an example of such analysis on Gene ex-
pressions time series.
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. e Fig. 5. A comparison of FA and ICA on three sets of gene expression
data. These results are obtained with three factors. Hereised a
different presentation of the loading matrix which is mopgm@pri-

ate for the cases where the number of factors are greatetwioan

This presentation is called Hinton where the values of thiirare

Rev-col

Emghiecol
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r2-col

o E ~ coded by color and by size of the patches.
el SN S E In Figure 5, we show the same results with three factors. How-
ot ever, when the number of factors is greater than two, it is voem
a) Factor Analysis b) Independent Component Analysiasy to represent them as bi-plot graphs of Figure 4. Heresea

different presentation of the loading matrix which is mopgm@pri-
Fig. 4. A comparison of FA and ICA on three sets of gene expressiorate for the cases where the number of factors are greatetwiman
data. These results are obtained with two factors. This presentation is called Hinton [16, 17] where the valokthe



matrix are coded by color and by size of the patches.

In Figure 6, we show two results of Linear Discriminant Anal-
ysis on 14 genes expressions in Colon and 13 genes expregsion
liver. As we can see, here two factors are enough to discataithe
three classes of mice. On this figure, at left, we see thigidigta-
tion and at right the weights of these genes in these tworfacto
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used these tools for analyzing some biological data whigmse
giving important information, or at least confirm their iitton on
the role of different quantities. We are still exploring $keools for
the real application of biological data where we have to adape
particularly these tools for the situations where:

- we have fewer number of data compared to the number of vari-
ables;

- the estimated covariance matrix of the data is not positéfanite;
- the data are inhomogeneous;

- the data have different sampling rate;

- there are some non-observed values (missing data);

- there are outliers in the observed data (for example, medtam-
perature greater than 44 or less then 35, etc.).

6. PERSPECTIVES

When analyzing these biological data, the main questionseeel
to answer can be summarized as follows:

Variable section: One of the main questions asked very often is:
If we had to redo other experiences, which ones of these igeant
are the most importances to observe again. This is a verguiffi
question. The answer depends on the type of information we tte
extract. Very often the quantities we have observed aretirfkorre-
lated or dependent). So, any selection of subset of vagataases,
in some sense, loss of information. So, this question, véignp
cannot be answered directly. We need modeling, the link &etw
variables directly or in a transformed space, dimensiomctaon,
clustering and classification, etc. Here are a few referenoacern-
ing this subject [18, 19, 20, 21, 22]

Dimension reduction and Factor analysis: The second question
is: Can we express the information content of all these data i
fewer set of factors or components? The main classical toais
are PCA, FA and ICA. One of the difficulties in these tools is th
determination of the number of factors which is still an opesblem
[23, 9, 7]. When the number of factors is fixed, then thesestoah
be used easily. However, one of the drawbacks of these ®thei
interpretation of the factors or components. Modeling ttobfem as

Fig. 6. Discriminant Analysis on real mice data: 13 genes expresa@n inverse problem of sources separation and using the fresBa

sions in liver have been used. Two factors have been enoutjs-to
criminate the three classes of mice (left). The weights e$¢hgenes
in these two factors are shown on the right.

The main difficulties in these data are: great dimensionalit
(more than fifty), non-homogeneity (Temperature, Activityor-
mones, Genes, Proteins), presence of outliers data, midata and
lack of synchronization (for example, temperature is messavery

approach are the promising tools to push farther thesediioiis
[24, 25, 23, 26, 27, 28, 9, 29].

Discriminant Analysis:

Very often the observed data comes from different classsglgécts
(male/female, healthy/Tumor,...) and we know the clasbethese
cases, another question which arises is: Which of thesablas or
factors are the most discriminant between classes? Hera fae

15 minutes but Genes expressions every 3 hours). We needjpo ad references concerning this subject [18, 30, 31, 32, 33,348 37,

these methods to account for all these difficulties. We anking
on these difficulties and will report soon in details on them.

5. CONCLUSIONS

In this paper, first we introduced a unifying presentatiormainy
classical data analysis methods such as PCA, FA and ICA mased
forward modeling and inversion. This unifying presentatfacili-
tates the comprehension of these different methods. Wepren
sented a simulation Matlab toolbox which has the possislibf
generating sources and observations, doing FA, PCA and @A a
evaluating the performances of the proposed methods. I¥;ina

38, 39].

Clustering and classification:

Some times, in opposite of the previous case, we have onlgatze
and we are asked to group or cluster them. This is also catatly
unsupervised classificatioin some other cases, we may know the
number of classes and even the characteristics of each classés.
The question is then to classify a given new observation.s Thi
calledtotally supervised classificatioWhen the number of classes
is known, but the characteristics of each classe has tedmed
from atraining setof observations, then the problem is calksini-
supervised classificationThe estimation of number of classes is



related tamodel selectionHere are a few references concerning this[11] Y. Koren and L. Carmel, “Robust linear dimensionaligdric-

subject [40, 33, 41, 8]

Graph of links and dependencies between variables:

One of the main steps of Knowledge extraction in studyinddgiio
cal data is producing a graph of dependencies between lesialp
obtain such a graph we need to decide if two variables arendepé
or not. We need then measures of dependencies to discogerdbe
pendencies [42, 43, 44, 45, 46, 47, 48]. One of the classichfrest

used is the Pearson’s correlatipnWhen|p| is near to one, we say

that the two variables are dependent. However, wpeérs near to
zero or even zero, this does not mean that the two variatdaade-

pendent. Indeedyp| measures only the linear dependence between

those two variables. There are many other measures of deperd

that we can use which are more appropriate. For example, evénas
Spearman’g, and the Kendall- jointly with Pearson’s correlation

p.

Graph of oriented dependencies between variables and causa
ity: One of the last steps of Knowledge extraction in studying bio
logical data is studying the oriented graph or causality 50 51]
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