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ABSTRACT

In this paper, first we present A Matlab toolbox which gives the
possibility to simulate the data for testing the algorithmssuch as:
Principal Component Analysis (PCA), Factor Analysis(FA),Inde-
pendent Component Analysis (ICA), Linear Discriminant Analysis
(LDA) and many other classification methods which can be used
in Data Reduction (DR), Data Visualization (DV), supervised and
unsupervised classification of multivariate great dimensional bio-
logical data. Then, we describe some biological experiments related
to studying the circadian cell cycles and cancer treatment where
the biologists observe different kind of data such as the variations
of temperature, activity, hormones, genes and proteins expressions.
These data are often complex: multivariate, great dimensionality,
heterogeneous, with missing data, and observed at different sam-
pling rates. The classical methods of PCA, FA, ICA and LDA can
not directly handle these data. In this paper, we show how this tool-
box can help them to visualize, to analyse and to do classifications
on these data and finally to extract some knowledge from them.

Keywords: Data visualization, Dimensionality reduction, Princi-
pal Component Analysis, Factor Analysis, Independent Compo-
nent Analysis, Linear Discriminant Analysis, Bayesian inference,
Sources separation, Inverse problems.

1. INTRODUCTION

In many biological experiments, we are always face to data sets
which are heterogeneous, of great dimensionality with missing and
outliers data. To understand these data, first we need to visualize
them, but the great dimensionality of these data needs a DataRe-
duction (DR) step. Principal Component Analysis (PCA), Factor
Analysis (FA), Independent Component Analysis (ICA) and Linear
Discriminant Analysis (LDA) methods are the main classicalmeth-
ods for analyzing high dimensional data [1, 2, 3, 4, 5, 6, 7, 8,9, 10].
PCA, FA and ICA are mainly used for dimensionality reductionand
LDA for supervised classification. Even if these methods arewell
defined, still there exist different algorithms for their practical us-
age: PCA and FA are the most stable ones because they use quadratic
criteria and L2 norms (second order statistics in statistical interpreta-
tion and Gaussian hypothesis in probabilistic interpretation) and so
they are very simple to implement. The characteristics of the results
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obtained by PCA and FA are well known. For example, we know
that the factors are obtained up to a rotation indetermination. ICA is
more complex because the criteria used to be optimized are often non
quadratic (Kullback-Leibler divergence) and use higher order statis-
tics (HOS) and non Gaussian probability laws. The corresponding
algorithms are then more sophisticated. However the commonprop-
erties of independent components are that they are obtainedup to a
permutation and scale factor indetermination. LDA can be consid-
ered as a particular supervised classification method wherewe know
the number of classes.

In this paper, in a first step, we present, very shortly, but ina
unifying way of forward and inverse problem, different multivariate
data analysis tools. Then, we present a Matlab toolbox: to generate
different factors with different properties; to generate different data
sets with linear or non linear dependencies; to add different kind of
errors; to apply different algorithms of PCA, FA, ICA, LDA, ... and
to compare the obtained results. In a second step, we show some
preliminary results for real data set obtained by biologists working
on circadian and cell cycle influence on cancer. This work is done in
collaboration within the European project EraSysBio.

2. A UNIFYING PRESENTATION OF MULTIVARIATE
DATA ANALYSIS METHODS THROUGH FORWARD AND

INVERSE MODELING

PCA, FA, ICA and LDA are classical methods of dimensionality
reduction and data analysis. Due to the origin of these methods,
there have been many different presentations and interpretations.
Here, we present them in an unifying context of forward modeling
and inversion. To do this, we start by defining the factorsf(t) =
[f1(t), · · · , fN (t)] which is anN -dimensional vector of time series.
Here, we choosed time series due to our final application. However,
the time index can be anything else, for example, just the index of
experiments of a position on a line, in a plane or in space.

In a first step, we assume that the observed datag(t) =
[g1(t), · · · , gM (t)] are obtained via a mixing (or loading) matrixA
of dimensions[M ×N ] through the forward model

f(t) −→
Forward
modelA

−→
↓ ǫ

©+−→ g(t) = Af(t)+ǫ(t), t = 1, · · · , T

(1)
whereǫ represents the errors of modeling andT is the total number
of observed samples.

Using this forward model, the objective of many data analysis
methods such as PCA, FA, ICA and LDA is to obtain the factorf

and the loading matrixA. Described as such, we see that this esti-
mation problem is very ill-posed in the sense that we can find many



combinations of factors and loading matrix which can satisfy this
model. In the following, we use this model to explain the differences
between PCA, FA, ICA and LDA.

PCA and FA methods try to find uncorrelated factorsf̂ . Because
correlation describes a linear dependence, the main assumption is
then thatf̂ has to be obtained through a linear combination of the
data: f̂(t) = Bg(t), where the matrixB is called separating (or
demixing or deloading) matrix.

g(t) −→
Inference

PCA, FA, ICA
LDA, Bayes

−→ Â or B̂

−→ f̂(t) = B̂ g(t)

(2)

Here, we are not going to describe these algorithms which are
described elsewhere in details [11, 12, 13, 14, 15], but we present a
Matlab toolbox in which we implemented all these methods.

3. PRESENTATION OF THE MATLAB SIMULATION
TOOLBOX

We have developed a menu driven simulation tool, which has, as the
main menu, the following steps:
– Generation of different sources (factors) with differentproperties
(Uniform, Gaussian, Mixture of Gaussian, ... ,
– Generation of different data sets with linear or nonlineardepen-
dencies,
– Addition of different kind of errors,
– Application of different algorithms of PCA, FA, ICA, LDA, ... and
– Visualization and evaluation tools which give possibility to eval-
uate the performances of a given method or to compare the results
obtained by two different methods.

As tools to measure the performances of these methods, we pro-
pose the following scheme:

f −→
Forward
modelA

−→
↓ ǫ

©+−→ g

g −→
Inference

PCA, FA, ICA
LDA, Bayes

−→ Â

−→ f̂ −→
Estimated

Â
−→ ĝ

and then comparêg with g, f̂ with f , Â with A, ...
As an example of using this simulation tool, we show here a

complete set of figures detailing the different steps of simulation and
inversion. Figure 1 shows an example of two sourcesf (generated
via a mixture of two Gaussian model) and five data setg obtained via
a mixing matrixA and addition of some noiseǫ using the forward
modelg = Af + ǫ and then the results obtained by FA and ICA.

As a second example, we show in Figure 2 two sources gener-
ated via a mixture of two Gaussian model. We then again used these
sources to generate the data and applied different methods of PCA,
FA, ICA (without using the class information) and LDA with using
the class information.

As a third example, we show in Figure 3 two sources generated
via a mixture of two uniforms model. We then again used these
sources to generate the data and applied different methods of PCA,
FA, ICA (without using the class information) and LDA with using
the class information.
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Fig. 1. Simulation of 2 sourcesf and 5 observationsg with T =
100 samples: a) sourcesf , b) observationsg, c) representation of
the mixing matrixA, d) scatter-plots of the sources, e) scatter-plots
of the observations, f) color presentation of the mixing matrix, g)
PCA factorsf̂ , h) scatter-plot of̂f againstf , i) representation of
the estimated mixing matrix̂A, j) ICA factors f̂ , k) scatter-plot of
f̂ againstf , l) representation of the estimated mixing matrixÂ.
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Fig. 2. Simulation of 2 sources (mixture of two Gaussian distribu-
tions)f and 3 observationsg with T = 400 samples: a) sources
f , b) observationsg, c) representation of the mixing matrixA, d)
scatter-plots of the sources, e) scatter-plots of the observations, f)
spatial structure of the 3 sources, g) PCA factorsf̂ , h) scatter-plot
of f̂ againstf and i) spatial structure of the PCA factorsf̂ , j,k,l) the
same with FA, m,n,o) the same with ICA.
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tions) f and 3 observationsg with T = 400 samples: a) sources
f , b) observationsg, c) representation of the mixing matrixA, d)
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of f̂ againstf and i) spatial structure of the PCA factorsf̂ , j,k,l) the
same with FA, m,n,o) the same with ICA.



4. APPLICATION ON REAL DATA

As we mentioned, we developed these tools for analyzing somebi-
ological data in relation with circadian cell cycle and evolution of
cancer tumors in the context of the European project ERASYSBIO.
A great number of experimentations have been done on mice. As
an example, different quantities such as Temperature, Activity, dif-
ferent Hormones, different Genes expressions and different Proteins
are measured during one or a few days and one of the problems ad-
dressed is finding the principal components or factors of some of
these data.

In Figure 4, we show an example of such analysis on Gene ex-
pressions time series.

Metabolism gene expressions time series analysis
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a) Factor Analysis b) Independent Component Analysis

Fig. 4. A comparison of FA and ICA on three sets of gene expression
data. These results are obtained with two factors.

For now, we just applied these methods directly on the time se-
ries data without accounting for time structure which is very impor-
tant. However, the results obtained seem to have some significant
importance for biologists. Here, we assumed only two factors. As
we can see it seems that there is a need to increase the number of
factors.
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Fig. 5. A comparison of FA and ICA on three sets of gene expression
data. These results are obtained with three factors. Here, we used a
different presentation of the loading matrix which is more appropri-
ate for the cases where the number of factors are greater thantwo.
This presentation is called Hinton where the values of the matrix are
coded by color and by size of the patches.

In Figure 5, we show the same results with three factors. How-
ever, when the number of factors is greater than two, it is no more
easy to represent them as bi-plot graphs of Figure 4. Here, weuse a
different presentation of the loading matrix which is more appropri-
ate for the cases where the number of factors are greater thantwo.
This presentation is called Hinton [16, 17] where the valuesof the



matrix are coded by color and by size of the patches.
In Figure 6, we show two results of Linear Discriminant Anal-

ysis on 14 genes expressions in Colon and 13 genes expressions in
liver. As we can see, here two factors are enough to discriminate the
three classes of mice. On this figure, at left, we see this discrimina-
tion and at right the weights of these genes in these two factors.
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Fig. 6. Discriminant Analysis on real mice data: 13 genes expres-
sions in liver have been used. Two factors have been enough todis-
criminate the three classes of mice (left). The weights of these genes
in these two factors are shown on the right.

The main difficulties in these data are: great dimensionality
(more than fifty), non-homogeneity (Temperature, Activity, Hor-
mones, Genes, Proteins), presence of outliers data, missing data and
lack of synchronization (for example, temperature is measured every
15 minutes but Genes expressions every 3 hours). We need to adapt
these methods to account for all these difficulties. We are working
on these difficulties and will report soon in details on them.

5. CONCLUSIONS

In this paper, first we introduced a unifying presentation ofmany
classical data analysis methods such as PCA, FA and ICA basedon
forward modeling and inversion. This unifying presentation facili-
tates the comprehension of these different methods. We thenpre-
sented a simulation Matlab toolbox which has the possibilities of
generating sources and observations, doing FA, PCA and ICA and
evaluating the performances of the proposed methods. Finally, we

used these tools for analyzing some biological data which seems
giving important information, or at least confirm their intuition on
the role of different quantities. We are still exploring these tools for
the real application of biological data where we have to adapt more
particularly these tools for the situations where:
- we have fewer number of data compared to the number of vari-
ables;
- the estimated covariance matrix of the data is not positivedefinite;
- the data are inhomogeneous;
- the data have different sampling rate;
- there are some non-observed values (missing data);
- there are outliers in the observed data (for example, measured tem-
perature greater than 44 or less then 35, etc.).

6. PERSPECTIVES

When analyzing these biological data, the main questions weneed
to answer can be summarized as follows:

Variable section: One of the main questions asked very often is:
If we had to redo other experiences, which ones of these quantities
are the most importances to observe again. This is a very difficult
question. The answer depends on the type of information we need to
extract. Very often the quantities we have observed are linked (corre-
lated or dependent). So, any selection of subset of variables causes,
in some sense, loss of information. So, this question, very often,
cannot be answered directly. We need modeling, the link between
variables directly or in a transformed space, dimension reduction,
clustering and classification, etc. Here are a few references concern-
ing this subject [18, 19, 20, 21, 22]

Dimension reduction and Factor analysis: The second question
is: Can we express the information content of all these data in a
fewer set of factors or components? The main classical toolshere
are PCA, FA and ICA. One of the difficulties in these tools is the
determination of the number of factors which is still an openproblem
[23, 9, 7]. When the number of factors is fixed, then these tools can
be used easily. However, one of the drawbacks of these tools is the
interpretation of the factors or components. Modeling the problem as
an inverse problem of sources separation and using the the Bayesian
approach are the promising tools to push farther these limitations
[24, 25, 23, 26, 27, 28, 9, 29].

Discriminant Analysis:
Very often the observed data comes from different classes ofsubjects
(male/female, healthy/Tumor,...) and we know the classes.In these
cases, another question which arises is: Which of these variables or
factors are the most discriminant between classes? Here area few
references concerning this subject [18, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39].

Clustering and classification:
Some times, in opposite of the previous case, we have only thedata
and we are asked to group or cluster them. This is also calledtotally
unsupervised classification. In some other cases, we may know the
number of classes and even the characteristics of each one ofclasses.
The question is then to classify a given new observation. This is
calledtotally supervised classification. When the number of classes
is known, but the characteristics of each classe has to belearned
from a training setof observations, then the problem is calledsemi-
supervised classification. The estimation of number of classes is



related tomodel selection. Here are a few references concerning this
subject [40, 33, 41, 8]

Graph of links and dependencies between variables:
One of the main steps of Knowledge extraction in studying biologi-
cal data is producing a graph of dependencies between variables. To
obtain such a graph we need to decide if two variables are dependent
or not. We need then measures of dependencies to discover these de-
pendencies [42, 43, 44, 45, 46, 47, 48]. One of the classical and most
used is the Pearson’s correlationρ. When|ρ| is near to one, we say
that the two variables are dependent. However, when|ρ| is near to
zero or even zero, this does not mean that the two variables are inde-
pendent. Indeed,|ρ| measures only the linear dependence between
those two variables. There are many other measures of dependencies
that we can use which are more appropriate. For example, we use the
Spearman’sρs and the Kendallτ jointly with Pearson’s correlation
ρ.

Graph of oriented dependencies between variables and causal-
ity: One of the last steps of Knowledge extraction in studying bio-
logical data is studying the oriented graph or causality [49, 50, 51]
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