
Application of bioinformatics models to define influenza 
virus A subtypes   

 
M. Ebrahimi1, P. Agha-Golzadeh2, E. Ebrahimie2 and N. Shamabadi3 

1Department of Biology & Bioinformatics Research Group, University of Qom, Qom, Iran  
2Department of Crop Production & Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran  

3Young Researcher Club, Qom Branch, Islamic Azad University, Qom, Iran  
 
 

Abstract - Influenza A viruses infect large numbers of 
animals and are subtyped according to their surface antigens 
to 16 HA subtypes and 9 NA subtypes. To identify the main 
prominent protein attributes representing each subtype, 
various clustering, screening, item set mining and decision 
tree models applied to dataset of 3632 HA sequences of 
influenza A viruses. The count of Tyr, Gln and Phe and the 
count of some hydrophilic – hydrophobic (such as Lys – Val, 
Asn – Leu and Pro – Leu) were the most important protein 
features. Most decision tree models used non-reduced 
absorption at 280nm as the main protein feature to build the 
trees. Parallel stump and ID3 numeric decision tree 
algorithms were the best tree to differentiate between HA 
subtypes. The results showed various bioinformatics tools may 
be used in this regard. For the first time, this paper showed 
that protein attributes can be used to differentiate between 
influenza A subtypes. 
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1 Introduction 
  Influenza is a highly contagious and acute respiratory 
disease with a high degree of morbidity and has been in 
circulation for centuries [1]. The disease is caused by the 
influenza virus, which is a segmented, enveloped RNA virus. 
Within the influenza virus family, there are four genera: A, B, 
C virus and Thogoto virus; although only A and B cause 
significant disease in humans [2]. Influenza A viruses are 
further subtyped according to their surface antigens, HA and 
NA, of which 16 HA subtypes and 9 NA subtypes have been 
identified to date [3]. The HA and NA genes are extremely 
variable in sequence, and less than 30% of the amino acids are 
conserved among all the subtypes. New epidemic strains of 
influenza A arise due to point mutations within two surface 
glycoproteins, HA and NA. These changes in HA and NA 
enable emerging virus strains to evade the host’s immune 
system and therefore necessitates the annual revision of 
vaccine to include the new viruses [4]. Furthermore, HA may 
also play a structural role in budding and particle formation. 
Human influenza viruses manage to cause epidemics almost 
every year. The circulating viruses change their surface 
glycoproteins by accumulating mutations (antigenic drift or 

antigenic shift) which results in variant viruses of the same 
subtype that are able to evade the immune pressure in the 
population [5]. 
Bioinformatics represents a new field at the interface of the 
twentieth-century revolutions in molecular biology and 
computers. A focus of this new discipline is the use of 
computer databases and computer algorithms to analyze 
proteins and genes. A major challenge in biology is to make 
sense of the enormous quantities of sequence data and 
structural data that are generated by genome-sequencing 
projects, proteomics, and other large-scale molecular biology 
efforts. Fitting a model such as a decision tree or item set 
mining to a set of variables this large may require more time 
than is practical [6]. A decision tree is constructed by looking 
for regularities in data, determining the features to add at the 
next level of the tree using an entropy calculation, and then 
choosing the feature that minimizes the entropy impurity [7]. 
To better understand the features that contribute to structural 
differences between influenza viruses A subtypes, it is 
necessary to identify the main features responsible for this 
valuable characteristic. Herein we used various clustering, 
screening, item set mining and decision tree models to 
determine which protein attributes may be used as a marker 
between subtypes of influenza A viruses. All available HA 
sequences (3632) of influenza A viruses from Swiss-Prot 
database were extracted and up to 924 protein features for 
each HA protein sequence was generated and various 
bioinformatics modeling techniques applied on this. 

2 Methods and Materials 
 Three thousand and six hundred and thirty two sequences of 
HA virus proteins from various species (human, bird, pig, 
horse, mouse, tiger, leopard, dog, and cat) were extracted 
from the UniProt knowledgebase database and categorized as 
H1 to H16, according to database classification. Nine hundred 
and twenty four protein features or attributes including 
primary and secondary protein features were extracted. A 
dataset of these protein features was imported into Clementine 
software [Clementine_NLV-11.1.0.95; Integral Solution, 
Ltd.], null data for subtype of virus was discarded, and this 
feature was set as the output variable and the other variables 
were set as input variables. The same database imported into 
RapidMiner software [RapidMiner 5.0.001, Rapid-I GmbH, 
Stochumer Str. 475, 44227 Dortmund, Germany] and again 
the subtype of virus set as target or label attribute [when Item 



Set Mining model performed, no label or target attribute was 
set as this model requires so]. To minimize the effects of 
correlated features on modelling and to decrease the 
processing time and burden on processing facilities, the 
original database subjected to remove correlated features 
algorithm, so the number of protein attributes (variables) 
decreased from 924 to 486 attributes. Various algorithms such 
as screening models [Anomaly detection model, feature 
selection algorithm or attribute weighting], clustering models 
[K-Means, TwoStep cluster], Tree Induction models [with 
various criterion, C5.0, C5.0 with 10-fold cross Validation 
and C&RT], Item Set Mining [FPGrowth] and Rule Induction 
model [10 fold cross-Validation through stratified sampling] 
run on each dataset as described previously [8]. Whenever 
requested by model, data were discretized by the frequency; 
i.e. data were divided into 3 bins [ranges] with nearly equal 
the frequencies in each class [low 0-0.3, mid 0.3-0.5 and high 
>0.5]; and sometimes data were converted to nominal and in 
some cases to binominal datasets. 

3 Results 
 The number of protein attributes gained weights higher than 
0.7 in each weighting model were as follows: PCA 2, SVM 
24, relief 4, uncertainty 17,  gini index 280, chi squared 39, 
deviation 2, rule 59, gain ratio 61, info gain 350 and info gain 
ratio 13.   
The most important feature used to build the tree was non-
reduced absorption at 280nm. If the value for this protein 
attribute was higher than 1.180 and the value for the count of 
Trp – Ala was higher than 0.500 and the count of Gly was 
higher than 49, the viral protein was originated from H10; 
otherwise from H3. If the count of Trp – Ala was equal to or 
less than 0.500, then the count of Ala – Ala (value of 3.500), 
the length of protein (value of 566) and the count of Trp – 
Asn (value of 0.500) used to differentiate between H14, H4, 
H8 and H9 groups. When the count of Trp – Asn was higher 
equal to or less than 0.500, if the count of Ser – Cys, non – 
reduced absorption at 280nm and aliphatic index were higher 
than 1.500, 1.44 and 86.690, respectively, the protein 
originated from H16; otherwise from H13. With the count of 
Ser – Cys was equal to or less than 1.500 and the count of His 
– Asn was higher than 0.500 and the count of Glu – Trp was 
higher than 0.500, if the count of Gly was higher than 44.500, 
virus belonged to H2, otherwise to H5 group. With the count 
of Glu – Trp (< 0.500) and the count of His – Asn (<.500), the 
virus HA proteins belonged to H1 and H6, respectively. If 
non-reduced absorption at 280nm was < 1.180 and the 
aliphatic index was > 81.875, the protein belonged to H12 
group, if not to H15 or H7.  
 
Stump decision tree model created a very simple tree with 
non-reduced absorption at 280nm variable as the root feature. 
Decision Tree Stump (Parallel) generated a tree again with the 
same starting attribute. More complex tree generated by ID3 
Numerical method and again tree built on non-reduced 
absorption attribute. Random tree started with another protein 
attribute, the count of His – Ala. When value for this attribute 

was higher than 1.500 and the count of Ala was higher than 
26.500, the protein fell into H6 group. if the count of His-Ala 
was higher than 1.500 and the count of Ala was less than or 
equal to 26.500, the virus protein identified as H16. Ten 
different models were used by Random Forest algorithm to 
induce decision trees. In the first model, the count of Met-Ala 
was the main feature used by this method to induce the tree 
and its branches was created using the count of Gly and the 
count of Vla – Arg attributes to classify H2, H5, H10, H9, 
H8, H7, H1 and H11 subtypes. In the second model, the count 
of Gly – Ala, the frequency of Pro – Ile, the count of Asn – 
Cys, the frequency of Pro – Ile, the count of Met – Lys and 
the count of Leu – Trp to trace H6, H11,H1, H3, H5, H13, H2 
and H9 subtypes. The count of Gly – Met, the count of Cys – 
His and the count of sulfur were the most important attributes 
to build the tree by the third model (H10, H3, H9H4 and H5). 
Random forest, the fifth model, was able to differentiate 
between H10, H1, H4 and H3 by inducing a tree with the 
frequency of Pro – Ser as the main feature and the count of 
Cys – Met as the other important feature. In other models the 
count of Gln – Phe, the count of Trp – Pro and the count of 
Ala – Ala (model 5), the count of His – Phe, the count of Ile – 
Phe, the count of Leu – Lys and the count of Ala – Gln 
(model 6), the count of Gln – Gln and the count of Gln – Tyr 
(model 7), the count of Phe – Lys, the count of Asn – His and 
the count of Ser – Pro (model 8), the count of Gly – Met, the 
count of Gly – Val, the count of Asp – Gly and the count of 
Pro – Ala (model 9) and the count of Trp – Met (model 10) 
were the most important features used to build the trees. 
GRI node analysis created 100 rules with 3631 valid 
transactions with minimum and maximum support of 44.09 % 
and 44.09 %, respectively, while maximum confidence 
reached 100 %. When feature selection was used, minimum 
support, maximum support, maximum confidence, and 
minimum confidence were the same as previous. In both 
methods [with/without feature selection filtering] the count of 
Gln – Leu, the frequency of Gly – His and the frequency of 
Pro – Asn were the main features used to create the first rules. 

4 Discussion 
 Although the numbers of attributes with weights equal to or 
higher than 0.70 varied from 2 (in PCA weighting) to 62 (in 
Info Gain Ratio and Rule Induction weighting), the 
percentage and the count of Tyr, the frequency and the count 
of Lys - Val, the percentage, the frequency and the count of 
Gln, the frequency and the count of Asn – Leu, the count of 
Pro – Leu, the percentage of Phe and the frequency of Ser – 
Ile chosen by 7 attribute weightings as one of the most 
important attributes. When the same models run on dataset 
with correlated remove features, only six attributes gained 
weights higher than 0.70; again the count of Tyr, the count of 
Gln, the count of Lys – Val and the count of Asn – Leu were 
the most important features with weights higher than 0.70. 
The count of Gln – Asn was the other weight higher than 
0.70. More than 50% of features gained high weights in both 
models were hydrophobic amino acids and the rest were 
mainly from hydrophilic amino acids. For the first time the 



importance of dipeptides in classifying the influenza virus A 
has been presented here. The combination of one hydrophobic 
amino acid such as Val, Leu or Ile and one hydrophilic amino 
acid such as Asn, Ser or Gln forms a strong link inside the 
protein and reduce the possibility of mutations in this area; 
but when there are hydrophobic dipeptides connections, the 
chance of mutation and flexibility increases.  
Although some trees generated by tree induction models had 
just two branches, as seen in stump decision tree, the depth of 
trees in some models were more complicated [more than 12 
branches in ID3 numeric run on information gain]. The ability 
of various decision tree induction models applied in this study 
to correctly and effectively classify influenza A subtypes 
based on protein attributes were very different. In some 
models, two or three classes were identified, showing the 
model was not competence in this field (as seen in decision 
tree stump, C5.0, C&RT, random tree and accuracy). But in 
some other models, such as decision tree run on removed 
correlated features' dataset, decision tree stump parallel and 
ID3 numeric, the models were able to completely classify the 
HA subtypes (H1 – H16) based on their protein features. So 
the latter models may be used as a suitable tool to classify 
those viral subtypes.  
The results showed that various bioinformatics tools and 
modelling facilities can be used to identify the subtypes of 
influenza virus A with a precision rate up to 95%. To our 
knowledge, for the first time we showed that some primary or 
secondary attributes can be used to differentiate between 
various subtypes of influenza A viruses. 
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