
Human Identification
via Neural Network

 By: Parviz Eshaghi
 Tehran- Iran

Abstract
This paper presents a novel approach of iris
verification based on Learning Vector Quantization
Neural Network. The features used in this approach
are based on the differences between the lines, rakes,
and vessels of each iris considered as being non
identical with any other one in the world. And for
extracting these features, equipments like edge
detection and discrete cosine transform (DCT) are
used. The recognition obtained is 98% in small size
database given via Learning Vector Quantization
Neural Network.
Key words: Canny edge detection, discrete cosine
transform, Learning Vector Quantization

1. Introduction
There are variable ways of human verification
through out the world, as it is of great importance for
all organizations, and different centers. Nowadays,
the most important ways of human verification are
recognition via DNA, face, fingerprint, signature,
speech, and iris.

Among all, one of the recent, reliable, and
technological methods is iris recognition which is
practiced by some organizations today, and its wide
usage in the future is of no doubt. Iris is a non
identical organism made of colorful muscles
including robots with shaped lines. These lines are
the main causes of making every one’s iris non
identical. Even the irises of a pair of eyes of one
person are completely different from one another.
Even in the case of identical twins irises are
completely different. Each iris is specialized by very
narrow lines, rakes, and vessels in different people.

The precision of identification via iris is
increased by using more and more details. It has been
proven that iris patterns are never changed nearly
from the time the child is one year old through out all
his life.

Over the past few years there has been
considerable interest in the development of neural
network based pattern recognition systems, because
of their ability to classify data. The kind of neural
network practiced by the researcher is the Learning
Vector Quantization which is a competitive network
functional in the field of classification of the patterns.

The iris images prepared as the database is
in the form of PNG (portable network graphics)

pattern, meanwhile they must be preprocessed
through which the boundary of the iris is recognized
and their features are extracted. For doing so, edge
detection is done by the usage of Canny approach.
For more diverse and feature extraction of iris images
DCT transform is practiced.

2. Feature Extraction
For increasing the precision of our verification of iris
system we should extract the features so that they
contain the main items of the images for comparison
and identification. The extracted features should be
in a way that cause the least of flaw in the output of
the system and in the ideal condition the output flaw
of the system should be zero. The useful features
which should be extracted are obtained through edge
detection in the first step and the in next step we use
DCT transform.

2.1 Edge Detection
The first step locates the iris outer boundary, i.e.
border between the iris and the sclera. This is done
by performing edge detection on the gray scale iris
image. In this work, the edges of the irises are
detected using the “Canny method” which finds
edges by finding local maxima of the gradient. The
gradient is calculated using the derivative of a
Gaussian filter. The method uses two thresholds, to
detect strong and weak edges, and includes the weak
edges in the output only if they are connected to
strong edges. This method is robust to additive noise,
and able to detect “true” weak edges. Figures 1 and 2
are the original and edge images, respectively.

Figure 1: image of a sample iris

 Figure 2: edges of a sample iris

Although certain literature has considered
the detection of ideal step edges, the edges obtained
from natural images are usually not at all ideal step

edges. Instead they are normally affected by one or
several of these effects: focal blur caused by a finite
depth-of-field and finite point spread function,
penumbral blur caused by shadows created by light
sources of non-zero radius, shading at a smooth
object edge, and local peculiarities or inter reflections
in the vicinity of object edges.

Despite the following model does not
capture the full variability of real-life edges, the error
function () has been used by a number of
researchers as the simplest extension of the ideal step
edge model for modeling the effects of edge blur in
practical applications. Thus, a one-dimensional
image (f) which has exactly one edge placed at x = 0
may be modeled as:

 (1)

At the left side of the edge, the intensity is

, and right of the edge it is

. The scale parameter σ is called the
blur scale of the edge.

2.1.1 Canny Method
The Canny edge detection algorithm is known to
many as the optimal edge detector. Canny's
intentions were to enhance the many edge detectors
already out at the time he started his work. He was
very successful in achieving his goal and his ideas
and methods can be found in his paper, "A
Computational Approach to Edge Detection". In his
paper, he followed a list of criteria to improve current
methods of edge detection. The first and most
obvious is low error rate. It is important that edges
existing in images should not be missed and that
there be NO responses to non-edges. The second
criterion is that the edge points be well localized. In
other words, the distance between the edge pixels as
found by the detector and the actual edge is to be at a
minimum. A third criterion is to have only one
response to a single edge. This was implemented
because the first 2 were not substantial enough to
completely eliminate the possibility of multiple
responses to an edge.

The Canny operator works in a multi-stage
process. First of all the image is smoothed by
Gaussian convolution. Then a simple 2-D first
derivative operator (somewhat like the Roberts
Cross) is applied to the smoothed image to highlight
regions of the image with important spatial
derivatives. Edges give rise to ridges in the gradient
magnitude image. The algorithm then tracks along
the top of these ridges and sets to zero all pixels that
are not actually on the ridge top so as to give a thin
line in the output, a process known as non-maximal
suppression. The tracking process exhibits hysteresis
controlled by two thresholds: T1 and T2, with T1 >
T2. Tracking can only begin at a point on a ridge

higher than T1. Tracking then continues in both
directions out from that point until the height of the
ridge falls below T2. This hysteresis helps to ensure
that noisy edges are not broken up into multiple edge
fragments.

An edge in an image may point in a variety
of directions, so the Canny algorithm uses four filters
to detect horizontal, vertical and diagonal edges in
the blurred image. The edge detection operator
(Roberts, Prewitt, Sobel for example) returns a value
for the first derivative in the horizontal direction (Gy)
and the vertical direction (Gx). From this the edge
gradient and direction can be determined:

 (2)

 (3)

The edge direction angle (theta) is rounded to one of
four angles representing vertical, horizontal and the
two diagonals (0, 45, 90 and 135 degrees for
example).

2.2 Discrete Cosine Transform
Like any Fourier-related transform, discrete cosine
transforms (DCTs) express a function or a signal in
terms of a sum of sinusoids with different
frequencies and amplitudes. Like the discrete Fourier
transform (DFT), a DCT operates on a function at a
finite number of discrete data points. The obvious
distinction between a DCT and a DFT is that the
former uses only cosine functions, while the latter
uses both cosines and sinusoids (in the form of
complex exponentials). However, this visible
difference is merely a consequence of a deeper
distinction: a DCT implies different boundary
conditions than the DFT or other related transforms.

The Fourier-related transforms that operate
on a function over a finite domain, such as the DFT
or DCT or a Fourier series, can be thought of as
implicitly defining an extension of that function
outside the domain. That is, once you write a
function f(x) as a sum of sinusoids, you can evaluate
that sum at any x, even for x where the original f(x)
was not specified. The DFT, like the Fourier series,
implies a periodic extension of the original function.
A DCT, like a cosine transform, implies an even
extension of the original function.

A discrete cosine transform (DCT)
expresses a sequence of finitely many data points in
terms of a sum of cosine functions oscillating at
different frequencies. DCTs are important to
numerous applications in science and engineering,
from lossy compression of audio and images (where
small high-frequency components can be discarded),
to spectral methods for the numerical solution of
partial differential equations. The use of cosine rather
than sine functions is critical in these applications:

for compression, it turns out that cosine functions are
much more efficient (as explained below, fewer are
needed to approximate a typical signal), whereas for
differential equations the cosines express a particular
choice of boundary conditions.

In particular, a DCT is a Fourier-related
transform similar to the discrete Fourier transform
(DFT), but using only real numbers. DCTs are
equivalent to DFTs of roughly twice the length,
operating on real data with even symmetry (since the
Fourier transform of a real and even function is real
and even), where in some variants the input and
output data are shifted by half a sample. There are
eight standard DCT variants, of which four are
common.

The most common variant of discrete cosine
transform is the type-II DCT, which is often called
simply "the DCT"; its inverse, the type-III DCT, is
correspondingly often called simply "the inverse
DCT" or "the IDCT". Two related transforms are the
discrete sine transform (DST), which is equivalent to
a DFT of real and odd functions, and the modified
discrete cosine transform (MDCT), which is based on
a DCT of overlapping data.

The DCT, and in particular the DCT-II, is
often used in signal and image processing, especially
for lossy data compression, because it has a strong
"energy compaction" property. Most of the signal
information tends to be concentrated in a few low-
frequency components of the DCT.

DCT-II

(4)

This transform is exactly equivalent (up to an overall
scale factor of 2) to a DFT of 4N real inputs of even
symmetry where the even-indexed elements are zero.
That is, it is half of the DFT of the 4N inputs yn,
where y2n = 0, y2n + 1 = xn for , and
y4N − n = yn for 0 < n < 2N.

The DCT-II implies the boundary
conditions: xn is even around n=-1/2 and even
around n=N-1/2; Xk is even around k=0 and odd
around k=N.

3. Neural Network
In this work one Neural Network structure is used,
which is Learning Vector Quantization Neural
Network. A brief overview of this network is given
below.

3.1 Learning Vector Quantization
Learning Vector Quantization (LVQ) is a supervised

version of vector quantization, similar to Self
organizing Maps (SOM) based on work of Linde et

al, Gray and Kohonen. It can be applied to pattern
recognition, multi-class classification and data
compression tasks, e.g. speech recognition, image
processing or customer classification. As supervised
method, LVQ uses known target output
classifications for each input pattern of the form.
 LVQ algorithms do not approximate density
functions of class samples like Vector Quantization
or Probabilistic Neural Networks do, but directly
define class boundaries based on prototypes, a
nearest-neighbor rule and a winner-takes-it-all
paradigm. The main idea is to cover the input space
of samples with ‘codebook vectors’ (CVs), each
representing a region labeled with a class. A CV can
be seen as a prototype of a class member, localized in
the centre of a class or decision region in the input
space. A class can be represented by an arbitrarily
number of CVs, but one CV represents one class
only.

In terms of neural networks a LVQ is a feed
forward net with one hidden layer of neurons, fully
connected with the input layer. A CV can be seen as
a hidden neuron (‘Kohonen neuron’) or a weight
vector of the weights between all input neurons and
the regarded Kohonen neuron respectively.
 Learning means modifying the weights in
accordance with adapting rules and, therefore,
changing the position of a CV in the input space.
Since class boundaries are built piecewise-linearly as
segments of the mid-planes between CVs of
neighboring classes, the class boundaries are adjusted
during the learning process. The tessellation induced
by the set of CVs is optimal if all data within one cell
indeed belong to the same class. Classification after
learning is based on a presented sample’s vicinity to
the CVs: the classifier assigns the same class label to
all samples that fall into the same tessellation – the
label of the cell’s prototype (the CV nearest to the
sample).
 The core of the heuristics is based on a
distance function – usually the Euclidean distance is
used – for comparison between an input vector and
the class representatives. The distance expresses the
degree of similarity between presented input vector
and CVs. Small distance corresponds with a high
degree of similarity and a higher probability for the
presented vector to be a member of the class
represented by the nearest CV. Therefore, the
definition of class boundaries by LVQ is strongly
dependent on the distance function, the start positions
of CVs, their adjustment rules and the pre-selection
of distinctive input features.

Briefly explaining, this network has two
layers: a layer of input neurons, and a layer of output
neurons. The network is given by prototypes
W=(w(i),...,w(n)). It changes the weights of the
network in order to classify the data correctly. For
each data point, the prototype (neuron) that is closest
to it is determined (called the winner neuron). The
weights of the connections to this neuron are then

adapted, i.e. made closer if it correctly classifies the
data point or made less similar if it incorrectly
classifies it.

3.1.1 Learning Algorithm

 (5)
Learning Vector Quantization (LVQ) structure

The number of neurons in the first layer (s1) should
be equal at least to the number of neurons in the
second layer, i.e,

21 SS 
Generally, the neurons in the first layer are more than
the second layer. The behavior of the LVQ Neural
Network is expressed by the equation below:

|||| 11 T
ii PWn  (6)

The pure input of the 1st neuron in the first
layer

And also it is written in Vector form as below:






















||||

||||

1
1

1
1

1

T
S

T

PW

PW

n
 (7)

The output vector of the first layer is:

)(11 ncompa  (8)

Therefore, the vector which has the nearest
weight to the input vector is equal to 1, and the rest
of the neurons have the zero output. The function of
the second layer is to compose the subclasses of one

class and to create just one class.
2W matrix in each

column has the element 1 and the other elements are
zero.

12 jiW The subclass of i belongs to j class

Kohonen learning rule is used to organize the
parameters of the LVQ NN layer in the form below:

)),()1(()()1(1
*

1
*

1
* kWkPakWkW i

T
ii  (9)

If: 1)1(*
2
*  kta jj (10)

4. Simulation Results
Practically we have done this work for a prepared
database for 10 people in which we gave a class for
the iris image of the left and right eye of every one
and in the long run we obtained 10 classes. It means
that in the second layer (s2) of the LVQ NN the
number of the neurons is 10, while we put in the first
layer (s1) 30 neurons. For each one of these 10
persons we took one image of the left eye iris and
another from the right eye iris, and implemented
these 20 taken images to the input of neural network
after feature extraction by Canny edge detection
approach and DCT transform. After learning network
for these 20 input images, and testing by the other
images from other left and right eyes irises other than
the very 20 images we had, finally the true
recognition results of our test came to an average of
98%. In this test we also used different noised
images.

5. Conclusion
In this paper, a novel technique is proposed for iris
verification. The classification is performed using
LVQ Neural Network. The neural network based
approach is found to be a promising one for iris
recognition.

References
[1] Canny, J., A Computational Approach to Edge
Detection, IEEE Trans. Pattern Analysis and
Machine Intelligence, 8:679-714, 1986.

[2] Frigo, Matteo, Steven G. Johnson: FFTW,
http://www.fftw.org/. A free (GPL) C library that can
compute fast DCTs (types I-IV) in one or more
dimensions, of arbitrary size.

[3] Frigo, Matteo, Steven G. Johnson, "The Design
and Implementation of FFTW3," Proceedings of the
IEEE 93 (2), 216–231 2005.

[4] "Bibliography on the Self-Organizing Map
(SOM) and Learning Vector Quantization (LVQ)",
Neural Networks Research Centre, Helsinki
University of Technology, 2002.

