
Human Identification
via Neural Network

   By: Parviz Eshaghi
    Tehran- Iran

Abstract
This paper presents a novel approach of iris 
verification based on Learning Vector Quantization 
Neural Network. The features used in this approach 
are based on the differences between the lines, rakes, 
and vessels of each iris considered as being non 
identical with any other one in the world. And for 
extracting these features, equipments like edge 
detection and discrete cosine transform (DCT) are 
used. The recognition obtained is 98% in small size 
database given via Learning Vector Quantization 
Neural Network. 
Key words: Canny edge detection, discrete cosine 
transform, Learning Vector Quantization

1. Introduction
There are variable ways of human verification 
through out the world, as it is of great importance for 
all organizations, and different centers. Nowadays, 
the most important ways of human verification are 
recognition via DNA, face, fingerprint, signature, 
speech, and iris. 

Among all, one of the recent, reliable, and 
technological methods is iris recognition which is 
practiced by some organizations today, and its wide 
usage in the future is of no doubt. Iris is a non 
identical organism made of colorful muscles 
including robots with shaped lines. These lines are 
the main causes of making every one’s iris non 
identical. Even the irises of a pair of eyes of one 
person are completely different from one another. 
Even in the case of identical twins irises are 
completely different. Each iris is specialized by very 
narrow lines, rakes, and vessels in different people. 

The precision of identification via iris is 
increased by using more and more details. It has been 
proven that iris patterns are never changed nearly 
from the time the child is one year old through out all 
his life. 

Over the past few years there has been 
considerable interest in the development of neural 
network based pattern recognition systems, because 
of their ability to classify data. The kind of neural 
network practiced by the researcher is the Learning 
Vector Quantization which is a competitive network 
functional in the field of classification of the patterns. 

The iris images prepared as the database is 
in the form of PNG (portable network graphics) 

pattern, meanwhile they must be preprocessed 
through which the boundary of the iris is recognized 
and their features are extracted. For doing so, edge 
detection is done by the usage of Canny approach.
For more diverse and feature extraction of iris images 
DCT transform is practiced.

2. Feature Extraction
For increasing the precision of our verification of iris 
system we should extract the features so that they
contain the main items of the images for comparison 
and identification. The extracted features should be 
in a way that cause the least of flaw in the output of 
the system and in the ideal condition the output flaw 
of the system should be zero. The useful features 
which should be extracted are obtained through edge 
detection in the first step and the in next step we use 
DCT transform.  

2.1 Edge Detection 
The first step locates the iris outer boundary, i.e. 
border between the iris and the sclera. This is done 
by performing edge detection on the gray scale iris 
image. In this work, the edges of the irises are 
detected using the “Canny method” which finds 
edges by finding local maxima of the gradient. The 
gradient is calculated using the derivative of a 
Gaussian filter. The method uses two thresholds, to 
detect strong and weak edges, and includes the weak 
edges in the output only if they are connected to 
strong edges. This method is robust to additive noise, 
and able to detect “true” weak edges. Figures 1 and 2
are the original and edge images, respectively.

                 
Figure 1: image of a sample iris

                         

         Figure 2: edges of a sample iris

Although certain literature has considered 
the detection of ideal step edges, the edges obtained 
from natural images are usually not at all ideal step 



edges. Instead they are normally affected by one or 
several of these effects: focal blur caused by a finite 
depth-of-field and finite point spread function, 
penumbral blur caused by shadows created by light 
sources of non-zero radius, shading at a smooth 
object edge, and local peculiarities or inter reflections
in the vicinity of object edges. 

Despite the following model does not 
capture the full variability of real-life edges, the error 
function ( ) has been used by a number of 
researchers as the simplest extension of the ideal step 
edge model for modeling the effects of edge blur in 
practical applications. Thus, a one-dimensional
image (f) which has exactly one edge placed at x = 0
may be modeled as:

         (1)

At the left side of the edge, the intensity is

, and right of the edge it is

. The scale parameter σ is called the 
blur scale of the edge.

2.1.1 Canny Method
The Canny edge detection algorithm is known to 
many as the optimal edge detector. Canny's 
intentions were to enhance the many edge detectors 
already out at the time he started his work. He was 
very successful in achieving his goal and his ideas 
and methods can be found in his paper, "A 
Computational Approach to Edge Detection". In his 
paper, he followed a list of criteria to improve current 
methods of edge detection. The first and most 
obvious is low error rate. It is important that edges 
existing in images should not be missed and that 
there be NO responses to non-edges. The second 
criterion is that the edge points be well localized. In 
other words, the distance between the edge pixels as 
found by the detector and the actual edge is to be at a 
minimum. A third criterion is to have only one 
response to a single edge. This was implemented 
because the first 2 were not substantial enough to 
completely eliminate the possibility of multiple 
responses to an edge.

The Canny operator works in a multi-stage 
process. First of all the image is smoothed by 
Gaussian convolution. Then a simple 2-D first 
derivative operator (somewhat like the Roberts 
Cross) is applied to the smoothed image to highlight 
regions of the image with important spatial 
derivatives. Edges give rise to ridges in the gradient 
magnitude image. The algorithm then tracks along 
the top of these ridges and sets to zero all pixels that 
are not actually on the ridge top so as to give a thin 
line in the output, a process known as non-maximal 
suppression. The tracking process exhibits hysteresis 
controlled by two thresholds: T1 and T2, with T1 > 
T2. Tracking can only begin at a point on a ridge 

higher than T1. Tracking then continues in both 
directions out from that point until the height of the 
ridge falls below T2. This hysteresis helps to ensure 
that noisy edges are not broken up into multiple edge 
fragments.

An edge in an image may point in a variety 
of directions, so the Canny algorithm uses four filters 
to detect horizontal, vertical and diagonal edges in 
the blurred image. The edge detection operator 
(Roberts, Prewitt, Sobel for example) returns a value 
for the first derivative in the horizontal direction (Gy) 
and the vertical direction (Gx). From this the edge 
gradient and direction can be determined:

        (2) 

   (3)

The edge direction angle (theta) is rounded to one of 
four angles representing vertical, horizontal and the 
two diagonals (0, 45, 90 and 135 degrees for 
example).

2.2 Discrete Cosine Transform
Like any Fourier-related transform, discrete cosine 
transforms (DCTs) express a function or a signal in 
terms of a sum of sinusoids with different 
frequencies and amplitudes. Like the discrete Fourier 
transform (DFT), a DCT operates on a function at a 
finite number of discrete data points. The obvious 
distinction between a DCT and a DFT is that the 
former uses only cosine functions, while the latter 
uses both cosines and sinusoids (in the form of 
complex exponentials). However, this visible 
difference is merely a consequence of a deeper 
distinction: a DCT implies different boundary 
conditions than the DFT or other related transforms.

The Fourier-related transforms that operate 
on a function over a finite domain, such as the DFT 
or DCT or a Fourier series, can be thought of as 
implicitly defining an extension of that function 
outside the domain. That is, once you write a 
function f(x) as a sum of sinusoids, you can evaluate 
that sum at any x, even for x where the original f(x) 
was not specified. The DFT, like the Fourier series, 
implies a periodic extension of the original function. 
A DCT, like a cosine transform, implies an even
extension of the original function.

A discrete cosine transform (DCT) 
expresses a sequence of finitely many data points in 
terms of a sum of cosine functions oscillating at 
different frequencies. DCTs are important to 
numerous applications in science and engineering, 
from lossy compression of audio and images (where
small high-frequency components can be discarded), 
to spectral methods for the numerical solution of 
partial differential equations. The use of cosine rather 
than sine functions is critical in these applications: 



for compression, it turns out that cosine functions are 
much more efficient (as explained below, fewer are 
needed to approximate a typical signal), whereas for 
differential equations the cosines express a particular 
choice of boundary conditions.

In particular, a DCT is a Fourier-related 
transform similar to the discrete Fourier transform
(DFT), but using only real numbers. DCTs are 
equivalent to DFTs of roughly twice the length, 
operating on real data with even symmetry (since the 
Fourier transform of a real and even function is real 
and even), where in some variants the input and 
output data are shifted by half a sample. There are 
eight standard DCT variants, of which four are 
common.

The most common variant of discrete cosine 
transform is the type-II DCT, which is often called 
simply "the DCT"; its inverse, the type-III DCT, is 
correspondingly often called simply "the inverse 
DCT" or "the IDCT". Two related transforms are the 
discrete sine transform (DST), which is equivalent to 
a DFT of real and odd functions, and the modified 
discrete cosine transform (MDCT), which is based on 
a DCT of overlapping data.

The DCT, and in particular the DCT-II, is 
often used in signal and image processing, especially 
for lossy data compression, because it has a strong 
"energy compaction" property. Most of the signal 
information tends to be concentrated in a few low-
frequency components of the DCT.

DCT-II

   
(4)

This transform is exactly equivalent (up to an overall 
scale factor of 2) to a DFT of 4N real inputs of even 
symmetry where the even-indexed elements are zero. 
That is, it is half of the DFT of the 4N inputs yn, 
where y2n = 0, y2n + 1 = xn for , and 
y4N − n = yn for 0 < n < 2N.

The DCT-II implies the boundary 
conditions: xn is even around n=-1/2 and even 
around n=N-1/2; Xk is even around k=0 and odd 
around k=N.

3. Neural Network
In this work one Neural Network structure is used, 
which is Learning Vector Quantization Neural 
Network. A brief overview of this network is given 
below.

3.1 Learning Vector Quantization
Learning Vector Quantization (LVQ) is a supervised 

version of vector quantization, similar to Self
organizing Maps (SOM) based on work of Linde et 

al, Gray and Kohonen. It can be applied to pattern 
recognition, multi-class classification and data 
compression tasks, e.g. speech recognition, image 
processing or customer classification. As supervised 
method, LVQ uses known target output 
classifications for each input pattern of the form.
           LVQ algorithms do not approximate density 
functions of class samples like Vector Quantization 
or Probabilistic Neural Networks do, but directly 
define class boundaries based on prototypes, a 
nearest-neighbor rule and a winner-takes-it-all 
paradigm. The main idea is to cover the input space 
of samples with ‘codebook vectors’ (CVs), each 
representing a region labeled with a class. A CV can 
be seen as a prototype of a class member, localized in 
the centre of a class or decision region in the input 
space. A class can be represented by an arbitrarily 
number of CVs, but one CV represents one class 
only.

In terms of neural networks a LVQ is a feed
forward net with one hidden layer of neurons, fully 
connected with the input layer. A CV can be seen as 
a hidden neuron (‘Kohonen neuron’) or a weight 
vector of the weights between all input neurons and 
the regarded Kohonen neuron respectively.
              Learning means modifying the weights in 
accordance with adapting rules and, therefore, 
changing the position of a CV in the input space. 
Since class boundaries are built piecewise-linearly as 
segments of the mid-planes between CVs of 
neighboring classes, the class boundaries are adjusted 
during the learning process. The tessellation induced 
by the set of CVs is optimal if all data within one cell 
indeed belong to the same class. Classification after 
learning is based on a presented sample’s vicinity to 
the CVs: the classifier assigns the same class label to 
all samples that fall into the same tessellation – the 
label of the cell’s prototype (the CV nearest to the 
sample). 
          The core of the heuristics is based on a 
distance function – usually the Euclidean distance is 
used – for comparison between an input vector and 
the class representatives. The distance expresses the 
degree of similarity between presented input vector 
and CVs. Small distance corresponds with a high 
degree of similarity and a higher probability for the 
presented vector to be a member of the class 
represented by the nearest CV. Therefore, the 
definition of class boundaries by LVQ is strongly 
dependent on the distance function, the start positions 
of CVs, their adjustment rules and the pre-selection 
of distinctive input features.

Briefly explaining, this network has two 
layers: a layer of input neurons, and a layer of output 
neurons. The network is given by prototypes 
W=(w(i),...,w(n)). It changes the weights of the 
network in order to classify the data correctly. For 
each data point, the prototype (neuron) that is closest 
to it is determined (called the winner neuron). The 
weights of the connections to this neuron are then 



adapted, i.e. made closer if it correctly classifies the 
data point or made less similar if it incorrectly 
classifies it.

3.1.1  Learning Algorithm

   (5)
Learning Vector Quantization (LVQ) structure

The number of neurons in the first layer (s1) should 
be equal at least to the number of neurons in the 
second layer, i.e,

21 SS 
Generally, the neurons in the first layer are more than 
the second layer. The behavior of the LVQ Neural 
Network is expressed by the equation below:

|||| 11 T
ii PWn    (6)   

The pure input of the 1st neuron in the first 
layer
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




















||||

||||

1
1

1
1

1

T
S

T

PW

PW

n
   (7)

The output vector of the first layer is:

)( 11 ncompa     (8)

Therefore, the vector which has the nearest 
weight to the input vector is equal to 1, and the rest 
of the neurons have the zero output. The function of 
the second layer is to compose the subclasses of one 

class and to create just one class. 
2W matrix in each 

column has the element 1 and the other elements are 
zero.

12 jiW    The subclass of i belongs to j class

Kohonen learning rule is used to organize the 
parameters of the LVQ NN layer in the form below:
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4. Simulation Results
Practically we have done this work for a prepared 
database for 10 people in which we gave a class for 
the iris image of the left and right eye of every one 
and in the long run we obtained 10 classes. It means 
that in the second layer (s2) of the LVQ NN the 
number of the neurons is 10, while we put in the first 
layer (s1) 30 neurons. For each one of these 10
persons we took one image of the left eye iris and 
another from the right eye iris, and implemented 
these 20 taken images to the input of neural network 
after feature extraction by Canny edge detection 
approach and DCT transform. After learning network 
for these 20 input images, and testing by the other 
images from other left and right eyes irises other than 
the very 20 images we had, finally the true 
recognition results of our test came to an average of 
98%. In this test we also used different noised 
images.

5. Conclusion 
In this paper, a novel technique is proposed for iris 
verification. The classification is performed using 
LVQ Neural Network. The neural network based 
approach is found to be a promising one for iris 
recognition. 
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