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Abstract— Promoter prediction is a computationally in-
teresting and complex problem. Various groups have tried
promoter prediction with different sequential and structural
features of promoters. The structural aspects of DNA in pro-
moter recognition are gaining popularity of late. First step
in transcription process is the binding of RNA polymerase
with the promoter. Here in this work, a preliminary study of
interactions between RNA polymerase and specifically the
binding sites within the promoter is carried out. Interaction
values between RNA polymerase and DNA are used to
identify the -35 and -10 binding sites in the promoter. A
set of windows around these regions are extracted. Bi-gram
features of these windows are used to test the validity of
using such interactions in promoter recognition. Two types
of encoding, Electron-ion interaction potential (EIIP) and
amino acid-base pair inetraction values are used to quantify
the interaction between RNA polymerase and the promoter.
Current results are comparable to earlier results obtained
with n-grams. The experiments seems to point to a signal
global in nature is much more efficient than local signal in
promoter recognition. The results also confirm that the basic
interactions between RNA polymerase and DNA (promoter)
have the capability to identify the promoters in a whole
genome.
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1. Introduction
Promoter prediction is complex and several groups of re-

searchers have attempted to solve this problem by extracting
different features which can be used to characterize the pro-
moters. Some of the features that have been used for this task
are position weight matrices [1], [2], [3], n-mers [4], [5],[6]
which are statistical in nature. There are methods that have
used DNA structural features such as enthalpy [7], thermal
stability [8], stress induced duplex destabilization [9],roll-
angle [7], base stacking energy [10] etc. Ponomarenko et
al. have listed a wide variety of structural properties [11].
A wide range of classifiers such as neural networks [13],
[1], SVM [12], hidden Markov model [14] and graph based
induction [15] are also used.

Even though there is a huge amount of work done,
the promoter prediction problem is far from being solved.
The accuracy of predictions is not very high. In case of
eukaryotes a group of promoters called GC rich promoters

are easier to predict than other promoters which are not GC
rich. We want to investigate this problem from the point of
view of the basic chemical interactions that arise between the
RNA polymerase and the promoter irrespective of the nature
of the promoters present in the genome. As a consequence,
DNA-RNA polymerase interactions and bi-grams are used
in the promoter identification in this work.

1.1 DNA-RNA Polymerase Interaction
In prokaryotes, the first step in transcription is the binding

of RNA polymerase with the promoter. RNA polymerase
is a large molecule consisting of five subunitsα1, α2, β,
β′ and ω. In order to bind promoter-specific regions, the
core enzyme requires another subunit, sigma (σ). The sigma
factor greatly reduces the affinity of RNAP for nonspecific
DNA while increasing specificity for certain promoter re-
gions, depending on the sigma factor. This way, transcription
is initiated at the right region. The complete holoenzyme
therefore has 6 subunits:α1α2ββ′ωσ ( 480 kDa). The
structure of RNAP exhibits a groove with a length of 55
(5.5 nm) and a diameter of 25 (2.5 nm). This groove fits
well the 20 (2 nm) double strand of DNA.

Promoter specific transcription on RNA polymerase is
conferred byσ subunit. Based on sequence analysis theseσ

factors are divided into two broad classesσ-70 factors and
σ-54 factors. Four highly conserved regions are identified
by aligningσ70 family of proteins [16], [17], [18]. Of these
regions 2 and 4 are highly conserved and basic in nature
and regions 1 and 3 exhibit low conservation and are acidic
in nature. The secondary structures of regions 1 and 2 are
predicted to beβ-sheets with helices and regions 3 and 4
are predicted to be helical [19].

A series of studies revealed that sub-region 2.4 (located
at the C-terminal end of region 2) interacts directly with
promoter -10 hexamer elements, whilst sub-region 4.2 (lo-
cated at the C-terminal end of region 4) interacts directly
with promoter -35 hexamer elements. A number of studies
using a variety of primary and alternativeσ factors from
E.coli and B.subtilis have identified residues of region 2.4
(a sub region of region 2) interacting with -10 hexamer
and these interactions are depicted in figure 1 [20], [21],
[22], [23]. Genetical analysis studies explain the interactions
between the residues of RNA polymerase and nucleotides
of -35 region in DNA [24], [25]. Figure 2 illustrates these
interactions between the residues ofσ4.2 region and the -35
region of the promoter. Eventhough a lot of other interactions



are involved, only the interactions between RNA polymerase
and the binding sites is considered here as a starting point.

Figure 1: Pictorial depiction of the interactions between -10
binding site and amino acids ofσ subunit.

Figure 2: Pictorial depiction of the interactions between -35
binding site and amino acids ofσ subunit.

A systematic study of n-grams in promoter prediction for
n = 2, 3, 4, 5 [6] was carried out by us. We have obtained
68% promoter prediction accuracy for E.coli withn = 3. We
got a very good prediction of promoters on forward-strand
of E.coli taken from NCBI data base [6].

The main difference between the work that is being
proposed in this paper and the work reported by Sobha et
al. [6] is that in this paper emphasis is on identifying the
binding sites through interaction between the DNA and RNA
polymerase whereas in the later work it is just the occurrence
of n-grams in the whole promoter without distinguishing the
binding sites and non-binding sites.

2. Approach
A preliminary study of DNA-RNA polymerase interaction

information in promoter recognition is performed by us
[26]. We have attempted to compute the interaction through
cross-correlation between promoter and RNA polymerase
sigma subunit. We have not considered the three-dimensional

aspect of RNA polymerase then. Hence, the results of
classification were not good for promoters. Here, in this
paper we have tried to identify a subset of amino acids
in RNA polymerase sigma subunit that takes part in the
interaction between promoter and RNA polymerase. These
appear mostly as part ofα helix in σ2 andσ4 regions ofσ
subunit.

Interaction between RNA polymerase and promoter is
quantified in two ways. One is by computing the cross-
correlation between the DNA and RNA polymerase sig-
nals converted into numerical sequences. Second one is
by considering the the values obtained considering the
interaction between amino acids and nucleotides. Cross-
correlation between the residues of sigma subunits of RNA
polymerase which interact with -10 and -35 hexamer regions
are converted into numerical sequence using the EIIP values
for the amino acid [27]. Similarly the nucleotides which take
part in this interaction are also converted into numerical
sequences using EIIP encoding [28]. Since we have no
knowledge about the nucleotides which interact with the
amino acids in a sigma subunit, we have followed the spacer
scheme of Ma et al. [13]. They have considered a varying
space of 15-21 bp (7 bp) between -35 and -10 regions and
3-11 bp (9 bp) between -10 region and TSS. In the same
way, we have constructed our sigma subunit segment of
length 80, consisting of zeroes except at the positions -35,
-31 and -13, -12, -11, -10 positions with different spacings
between them. This would result in a set of 63 combinations.
Maximum correlation coefficient of the 63 combinations is
chosen to fix the spacers between -35 and -10 regions and
also between -10 region and TSS. Once the spacers are fixed,
we can identify the binding regions in a promoter. Windows
of certain length are extracted around these binding sites.
Bi-gram features of these windows are extracted as features
for a multi-layer feed forward neural network to train and
identify the promoters in a genome.

3. Methodology
E.coli promoter data set is used for experimentation. We

consider sequences of length 80 bp with 60 base pairs
upstream of the Transcription Start Site (TSS) and the rest
downstream [12]. Positive data set consists of 669 promoter
sequences of length 80 bp [12]. Negative data sets of Gordon
et al. who have chosen these in a biologically meaningful
way by taking sequence fragments outside the promoter
region. They also have built negative data sets with 709
sequence fragments from coding region and 709 sequence
segments from intergenic portions.

3.1 Feature Extraction
Features are extracted in two stages. In the first stage,

DNA-RNA polymerase interaction is used. In the second
stage, windows around binding sites are identified and bi-
gram features of these are extracted. These features are used



as input for a multi-layer feed forward network to learn about
promoter. Here, the promoter recognition is posed as a binary
classification problem.

3.1.1 Step 1: Identification of binding sites using DNA-
RNA polymerase interaction

From literature the amino acids that interact with -10 and
-35 binding regions are identified. The residues that interact
with -35 binding site are taken from the work of Campbell et
al. [25]. Similarly the residues that participate in interaction
with -10 binding site are taken from the work of Malhotra
et al. [23]. These are depicted in Figure 1.

In order to compute the interaction between DNA and
RNA polymerase, we have chosen the cross-correlation
as the means. Cross-correlation between the two can be
computed by converting both DNA and RNA polymerase
sequences into numerical sequences. In this method the
amino acid residues and nucleotides are encoded into nu-
merical format using EIIP values [27], [28]. EIIP encoding
is chosen since it can be used to encode both amino acids
and nucleotides. Table 1 lists the EIIP values of the relevant
amino acids and nucleotides.

Table 1: EIIP values for amino acids [27] and nucleotides
[28].

Amino acid EIIP Nucleotide EIIP

Tyrosine(Y) 0.0516 A 0.1260
Tryptophan(W) 0.0548 T 0.1335
Glutamine(Q) 0.0761 G 0.0806
Threonine(T) 0.0941 C 0.1340
Arginine (R) 0.0959

Another way of encoding using values provided by Man-
del et al. [29]. Mandel et al. [29] have analyzed protein-dna
complexes to extract all non-homologous pairs of amino
acid-base pairs that are in close contact. A quantitative
measure of the likelihood of the interaction between each
pair of amino acid and base is computed. A score can be
computed by summing up the individual measures of amino
acid-base pairs assuming additivity in their contributions to
binding. This score can be used a measure of the compat-
ibility between the protein and its dna target. Table 2 lists
these amino acid-base pair interaction values.

Table 2: Amino acid-base pair interaction values [29].
G A T C

Trp -1.96 -3.93 -1.96 -3.93
Tyr -2.87 -2.87 0.54 0.13
Gln -0.09 1.16 0.31 -3.09
Thr -3.46 -0.06 -0.06 -1.16
Arg 2.74 0.34 1.25 -3.93

In order to obtain the interaction between promoter and
residues in the sigma subunit,similar(j) defined in 1 is
computed.

similar(j) = min(Σabs(s1 − s2)); j = 1, 2, 3, . . . , 63 (1)

Here j=1 denotes the spacing between -35 and -10 regions
as 15, and spacing between -10 and TSS as 3 bp. Similarly,
j=2 denotes spacing between -35 and -10 regions as 16, and
spacing between -10 and TSS as 3 bp and so on. Final j=63
denotes spacing between -35 and -10 regions as 21, and
spacing between -10 and TSS as 11 bp. These are listed in
Table 3.similar(j) will be close to zero ifs1 and s2 are
close to each other. That is, if we supposes1 as promoter
ands2 as the set of residues that interact with the promoter,
when they are compatible with each other, thensimilar(j)
values will also be zero.

Table 3: Spacing between -35 and -10 binding sites (SP35)
and -10 and TSS (SP10) for different j values.

j SP35 (bp) SP10 (bp)

1 15 3
2 16 3
.. .. ..
7 21 3
8 15 4
.. .. ..
63 21 11

The values of the 63 combinations for various spacings
between -35 and -10 regions and -10 and TSS can be treated
as the compatibility between the sigma subunit and promoter
binding regions. Of the 63 combinations obtained from the
above calculations, the highest score is considered to arrive
at the spacers between binding sites. Fixing up the spacers,
binding sites can be identified.

3.1.2 Step2: Bi-gram feature extraction

Regions with high information content are selected,
specifically 17 positions around the -35 binding site and
11 positions around the -10 binding site and 7 positions
around the transcription start site are extracted. A bi-gram
is a combination of contiguous two letters. DNA consist of
four bases and therefore 16 bigrams (AA, AT, AG, AC,
TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, CC)
are formed [6]. For each window 16 bigrams are computed.
In total 48 bi-gram features are obtained for all the three
windows. Two types of experiments are performed. One in
which the original 48 bigram features are given as input
features to the multi-layer feed-forward (MLFF) perceptron.
The output of the neural network is≥ 0.5 if the given
sequence is predicted as a promoter. Second one in which the
bi-gram feature values for each of the windows are combined
together into 16 bigram features. Simulations are done using
SNNS package [30].



3.2 Training and Testing
Bi-gram features extracted from the windows around the

binding sites and TSS are used as input features for the
MLFF neural network. We have carried out 5-fold cross-
validation procedure in which the total data set is divided
into 5 parts. In each fold, 1 part will form the test set while
the remaining four will be used for training. Precision (Pr),
Sensitivity (Sn) and Specificity (Sp) are used as measures of
classification performance. Specificity is the proportion of
the negative test sequences that are correctly classified and
sensitivity is the proportion of the positive test sequences
that are correctly classified. Precision is the proportion of
the correctly classified sequences of the entire test data set.

3.3 Extension to Whole Genome Promoter Pre-
diction

The real test for any promoter recognition is it’s ability to
identify promoters in a whole genome. Towards this end, we
have usedsection1 and section3 of E.coli. Total genome
of E.coli is divided into 400 sections. Out of these sections
two sectionssection1 and section3 are chosen to extend
the promoter recognition algorithm. These are chosen for
the purpose of comparison with the results obtained using
n-gram features [6]. A sliding window of 80 bp is used
to segment these sections into segments of size 80 bp. We
consider a sliding window of length 80 extracting segments
from the start of the DNA sequence considered, that is, 1–
80, 2–81, 3–82 and so on. These are represented as the bi-
gram feature vectors which are used by the neural network
classifier. Each of the segments gets classified as promoter
(P) or non-promoter (NP). If a segmentm − (m + 79) is
classified as a promoter, then the nucleotidem is annotated
as P and if it is classified as non-promoter thenm is
annotated asNP . This process of annotation is continued for
the entire sequence to get a sequence ofP ’s andNP ’s. We
propose that if a contiguous segment of length more than a
certain threshold has allP ’s then we annotate that region as
promoter region otherwise as non-promoter region. For the
verification purpose we have considered thesection1 and
section3 of E.coli [31]. It also denotes the set of promoters
present in these segments.

4. Discussion
Table 4 shows the average of 5-fold cross validation

results for both 48 bigram features as well as 16 bigram
features extracted usingsimilar(j) (refer to equation 1).
Sensitivity and specificity using 48 bigram-features are close
to what was obtained using bi-grams for the entire pro-
moter [6] than the ones obtained with 16-bigram features.
But section1 and section3 results using 48 features and
16 features extracted from the windows usingsimilar(j)
values present a different scenario. False-positives, that is
non-promoters identified as promoters are much less with 16

features compared to 48 features. This fact is evident from
figures 3 and 4. In these figures X-axis has a moving window
of size 80 bp and y-axis shows the output of the neural
network for each window. Only output greater than 0.5 is
considered as a promoter. It is not only an output greater
than 0.5 that is essential we also need to have a stretch of
continuous ones over a threshold value of 20-25 is required
to annotate the stretch of base pairs as as a promoter. In
this context, we could identify a clear stretch of positives
with 16 features compared to 48 features. These results
are comparable to what was obtained using n-grams [6].
We have also carried out one more experiment wherein the
nucleotides in the windows are straightaway used as input
features to the neural network after converting them into
numerical values using EIIP codes. This experiment results
are not as good as the results obtained with bi-grams.

Table 4: Classification results usingsimilar(j)features.
SetA: Bi-grams from each window used separately and SetB:
Bi-grams from each window combined together.

Features Number Pr Sp Sn

SetA 48 79.15 86.92 62.76
SetB 16 76.47 86.53 55.14
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Figure 3:section1 of E.coli tested with 48 bi-gram features.
X-axis has a moving window of size 80 bp and y-axis shows
the output of the neural network for each window.
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Figure 4:section1 of E.coli tested with 16 bi-gram features.
X-axis has a moving window of size 80 bp and y-axis shows
the output of the neural network for each window.

As in the case of n-grams extracted from the whole pro-



moter, we have obtained satisfactory results with the features
extracted from the interaction between promoter and certain
residues of sigma subunit. Through this interaction, we have
extracted the binding sites and the windows around the
binding sites and TSS. Whole genome promoter prediction
results using 16 bi-gram features in fact assures that the
binding sites that are extracted are of relevance since we
obtain similar results as in the case of bi-grams extracted
from the whole promoter. Results obtained with 16 features
compared to 48 features indicates that a global signal is
much more powerful than a local signal.

Annotation of samesection1 and section3 of E.coli
obtained with features extracted from interactions derived by
Mandel et al. is done and the results of the annotation for
section1 is shown in Figure 5. Similar results are predicted
by these features also. But, the stretch of promoters is about
15-25 only. None of these results are predicting as well as
3-grams [6].
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Figure 5:section1 of E.coli tested with 16 bi-gram features
extracted from interactions proposed by Mandel et al. X-axis
has a moving window of size 80 bp and y-axis shows the
output of the neural network for each window.

Moreover, frequency analysis of the binding sites ex-
tracted using EIIP and Mandel values, indicates a marked
bias towards certain bases in positions -35 and -31 and also
-13, -12, -11 and -10. Table 5 and Table 6 represent the
frequency of occurrence each base pair at each position in -
35 binding site. The consensus at the -35 binding site of
each position using EIIP gives a closer similarity to the
general consensus TTGACA observed in literature. Since
EIIP values for T and C are close, that could explain some
distribution between T and C at -35 position and -31. In
case of interactions obtained through Mandel’s values, since,
Glutamine favours A in comparison to the others, we could
observe, a bias towards A. So is Arginine at position -31
which favours G.

The annotation results of these sections of E.coli compare
with that of results obtained using 3-grams in the earlier
work [6]. The distinct aspect of this work is the identification
of the binding sites through the interactions between RNA
polymerase and the binding sites of the promoter. If the
binding sites were not identified correctly, the resulting bi-
grams around the windows would not lead to the correct

Table 5: Frequency of occurrence of bases in -35 binding
site for promoters using Mandel et al. interaction values

-35 -34 -33 -32 -31 -30

A 0.503 0.282 0.298 0.230 0.018 0.242
T 0.381 0.285 0.367 0.430 0.228 0.317
G 0.113 0.175 0.089 0.094 0.753 0.145
C 0.0014 0.257 0.243 0.245 0.000 0.296

Table 6: Frequency of occurrence of bases in -35 binding
site for promoters using EIIP encoding forinteraction

-35 -34 -33 -32 -31 -30

A 0.051 0.291 0.260 0.341 0.052 0.294
T 0.412 0.375 0.288 0.323 0.374 0.269
G 0.000 0.224 0.309 0.224 0.000 0.291
C 0.537 0.109 0.142 0.112 0.574 0.145

identification of the promoters. This was verified through
experiments where the binding sites were incorrectly iden-
tified and the resulting classification accuracy of promoters
was down to 45%. Only in the case of correct identification,
we get to identify binding sites correctly hence can identify
promoters much better.

5. Conclusions
Promoter recognition is attempted using the interactions

between RNA polymerase and promoter. Experiments with
similarity and cross correlation between RNA polymerase
and promoter are tried. Experiments used to obtain similarity
and cross-correlation using EIIP values show that a global
signal (Figure 4) is rather more effective than a local signal
(Figure 3). Eventhough the test data results indicate a higher
sensitivity value, generalization capability of the 16 features
is better than 48 features. The results also point to the fact
that similarity measure between the signal is more efficient
in promoter recognition. Interactions derived using amino
acid-base pairs are not as powerful as the signal derived
using EIIP values. The analysis of frequency distribution
of bases in the binding sites shows that EIIP values have
a distribution closer to the predicted consensus sequence
compared to amino acid-base pair interactions. Additivity
of interactions is assumed in these cases. Whether there
is a stable conformation possible, with a lower inetraction
value is to be investigated further. And also addition of
more interactions to the set will increase the accuracy much
further. A committee machine using these different features
can be designed to annotate a segment as a promoter or a
non-promoter based on voting. In addition the same sections
are used for annotation with GLIMMER and Genemark
packages which annotate the coding regions in the given
DNA segment. Most of our promoters identified are occur-
ring upstream of these coding regions giving credence to our
annotation scheme.

Same arguments can be extended for eukaryotes in which



lot of transcription binding factors (TBP) bind to a promoter
before a RNA polymerase is summoned. In this case, the
interaction between TBPs and promoter can be modeled
through the protein-promoter binding interactions and can
be use to identify the promoters.

The main aim of the work is to prove the efficacy of the
interaction between the RNA polymerase and the DNA in
identifying the promoters in a whole genome. Eventhough
the n-gram features are being used, it is very important
to correctly identify the binding site regions through the
interaction between DNA and RNA polymerase to get good
accuracies. Hence, the main assumption that the interaction
between DNA and RNA polymerase is proven to be very
useful in promoter identification.
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teinâĂŞDNA binding sites,” Nucleic Acids Research, vol. 26, pp.
2306-2312 , 1998.

[30] Stuttgart Neural Network Simulator. Available: http://www-
ra.informatik.uni-tuebingen.de/SNNS/

[31] NCBI Viewer
Available: http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=1786181


