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Abstract— Promoter prediction is a computationally in- are easier to predict than other promoters which are not GC
teresting and complex problem. Various groups have triedich. We want to investigate this problem from the point of
promoter prediction with different sequential and struetu  view of the basic chemical interactions that arise betwhen t
features of promoters. The structural aspects of DNA in proRNA polymerase and the promoter irrespective of the nature
moter recognition are gaining popularity of late. First pte of the promoters present in the genome. As a consequence,
in transcription process is the binding of RNA polymeraseDNA-RNA polymerase interactions and bi-grams are used
with the promoter. Here in this work, a preliminary study of in the promoter identification in this work.
interactions between RNA polymerase and specifically the )
binding sites within the promoter is carried out. Interanti  +-1 DNA-RNA Polymerase Interaction
values between RNA polymerase and DNA are used to In prokaryotes, the first step in transcription is the bigdin
identify the -35 and -10 binding sites in the promoter. Aof RNA polymerase with the promoter. RNA polymerase
set of windows around these regions are extracted. Bi-graris a large molecule consisting of five subunits, oo, 3,
features of these windows are used to test the validity o’ and w. In order to bind promoter-specific regions, the
using such interactions in promoter recognition. Two typesore enzyme requires another subunit, sigama The sigma
of encoding, Electron-ion interaction potential (EIIP) din factor greatly reduces the affinity of RNAP for nonspecific
amino acid-base pair inetraction values are used to qugntif DNA while increasing specificity for certain promoter re-
the interaction between RNA polymerase and the promotegions, depending on the sigma factor. This way, transoripti
Current results are comparable to earlier results obtainedis initiated at the right region. The complete holoenzyme
with n-grams. The experiments seems to point to a signdherefore has 6 subunitsy;as35'wo ( 480 kDa). The
global in nature is much more efficient than local signal instructure of RNAP exhibits a groove with a length of 55
promoter recognition. The results also confirm that the basi (5.5 nm) and a diameter of 25 (2.5 nm). This groove fits
interactions between RNA polymerase and DNA (promotenyell the 20 (2 nm) double strand of DNA.
have the capability to identify the promoters in a whole Promoter specific transcription on RNA polymerase is
genome. conferred by subunit. Based on sequence analysis these
factors are divided into two broad classe£0 factors and
Keywords: Classification ; EIIP encoding ; amino acid-base pairs-54 factors. Four highly conserved regions are identified

integration; machine learning by aligningo70 family of proteins [16], [17], [18]. Of these
. regions 2 and 4 are highly conserved and basic in nature
1. Introduction and regions 1 and 3 exhibit low conservation and are acidic

Promoter prediction is complex and several groups of rein nature. The secondary structures of regions 1 and 2 are
searchers have attempted to solve this problem by exteactirpredicted to bes-sheets with helices and regions 3 and 4
different features which can be used to characterize the prare predicted to be helical [19].
moters. Some of the features that have been used for this taskA series of studies revealed that sub-region 2.4 (located
are position weight matrices [1], [2], [3], n-mers [4], [$$] at the C-terminal end of region 2) interacts directly with
which are statistical in nature. There are methods that hayeromoter -10 hexamer elements, whilst sub-region 4.2 (lo-
used DNA structural features such as enthalpy [7], thermatated at the C-terminal end of region 4) interacts directly
stability [8], stress induced duplex destabilization [@ll-  with promoter -35 hexamer elements. A number of studies
angle [7], base stacking energy [10] etc. Ponomarenko etsing a variety of primary and alternative factors from
al. have listed a wide variety of structural properties [11] E.coli and B.subtilis have identified residues of region 2.4
A wide range of classifiers such as neural networks [13](a sub region of region 2) interacting with -10 hexamer
[1], SVM [12], hidden Markov model [14] and graph basedand these interactions are depicted in figure 1 [20], [21],
induction [15] are also used. [22], [23]. Genetical analysis studies explain the intéoarcs

Even though there is a huge amount of work donepetween the residues of RNA polymerase and nucleotides
the promoter prediction problem is far from being solved.of -35 region in DNA [24], [25]. Figure 2 illustrates these
The accuracy of predictions is not very high. In case ofinteractions between the residuessdf2 region and the -35
eukaryotes a group of promoters called GC rich promotersegion of the promoter. Eventhough a lot of other interatgio



are involved, only the interactions between RNA polymerasaspect of RNA polymerase then. Hence, the results of
and the binding sites is considered here as a starting pointlassification were not good for promoters. Here, in this
paper we have tried to identify a subset of amino acids

Sigma 2.4 region of RNAP in RNA polymerase sigma subunit that takes part in the
interaction between promoter and RNA polymerase. These
441 437 440 433 430 appear mostly as part ef helix in 02 ando4 regions ofc

Cend @ @@ Y @ N end subunit. . .
an Interaction between RNA polymerase and promoter is

quantified in two ways. One is by computing the cross-
correlation between the DNA and RNA polymerase sig-

nals converted into numerical sequences. Second one is
5! 3 o . L
by considering the the values obtained considering the

43 2 a1 a0 9 .8 7 interaction between amino acids and nucleotides. Cross-
correlation between the residues of sigma subunits of RNA
Promoter -10 binding site polymerase which interact with -10 and -35 hexamer regions

are converted into numerical sequence using the EIIP values
for the amino acid [27]. Similarly the nucleotides whicheak
part in this interaction are also converted into numerical
sequences using EIIP encoding [28]. Since we have no

Figure 1: Pictorial depiction of the interactions betwe#@ -
binding site and amino acids ef subunit.

Sigma 4.2 region of RNAP knowledge about the nucleotides which interact with the

amino acids in a sigma subunit, we have followed the spacer

589 584 scheme of Ma et al. [13]. They have considered a varying

Cend @ @ N end space of 15-21 bp (7 bp) between -35 and -10 regions and
3-11 bp (9 bp) between -10 region and TSS. In the same

/ way, we have constructed our sigma subunit segment of

/ \ length 80, consisting of zeroes except at the positions -35,

-31 and -13, -12, -11, -10 positions with different spacings
5 ﬂ_D_D_D_D_ﬂ_m 3 between them. This would result in a set of 63 combinations.

Maximum correlation coefficient of the 63 combinations is
chosen to fix the spacers between -35 and -10 regions and
also between -10 region and TSS. Once the spacers are fixed,
we can identify the binding regions in a promoter. Windows
Figure 2: Pictorial depiction of the interactions betwe8h - of certain length are extracted around these binding sites.
binding site and amino acids of subunit. Bi-gram features of these windows are extracted as features
for a multi-layer feed forward neural network to train and
A systematic study of n-grams in promoter prediction foridentify the promoters in a genome.
n = 2,3,4,5 [6] was carried out by us. We have obtained
68% promoter prediction accuracy for E.coli with=3. We 3. Methodology
got a very good prediction of promoters on forward-strand g ¢qji promoter data set is used for experimentation. We
of E.coli taken from NCBI data base [6]. _ _consider sequences of length 80 bp with 60 base pairs
The main difference between the work that is being,nsiream of the Transcription Start Site (TSS) and the rest
proposed in this paper and the work reported by Sobha &foynstream [12]. Positive data set consists of 669 promoter
al. [6] is that in this paper emphasis is on identifying thegeqyences of length 80 bp [12]. Negative data sets of Gordon
binding sites through interaction between the DNA and RNAg¢ 5 \who have chosen these in a biologically meaningful

ponmerase_whereas in the Iaterwor_k it isju_st_the OCCURENG, oy by taking sequence fragments outside the promoter
of n-grams in the whole promoter without distinguishing theregion. They also have built negative data sets with 709

binding sites and non-binding sites. sequence fragments from coding region and 709 sequence
segments from intergenic portions.
2. Approach 9 genie

A preliminary study of DNA-RNA polymerase interaction 3-1 Feature Extraction
information in promoter recognition is performed by us Features are extracted in two stages. In the first stage,
[26]. We have attempted to compute the interaction througlDNA-RNA polymerase interaction is used. In the second
cross-correlation between promoter and RNA polymerasstage, windows around binding sites are identified and bi-
sigma subunit. We have not considered the three-dimerisiongram features of these are extracted. These features afe use

Promoter -35 binding site



as input for a multi-layer feed forward network to learn abou
promoter. Here, the promoter recognition is posed as ayinar

classification problem. similar(j) = min(Sabs(s1 —s2));7 =1,2,3,...,63 (1)

3.1.1 Step 1: Identification of binding sites using DNA-

RNA polymerase interaction Here j=1 denotes the spacing between -35 and -10 regions

” i . ) ] as 15, and spacing between -10 and TSS as 3 bp. Similarly,
From literature the amino acids that interact with -10 and=2 genotes spacing between -35 and -10 regions as 16, and
-35 binding regions are identified. The residues that ictera spacing between -10 and TSS as 3 bp and so on. Final j=63
with -35 binding site are taken from the work of Campbell etyanotes spacing between -35 and -10 regions as 21, and

al. [25]. Similarly the residues that participate in intefan spacing between -10 and TSS as 11 bp. These are listed in
with -10 binding site are t_aken.from the work of Malhotra 15pje 3.similar(j) will be close to zero ifs; and s, are
et al. [23]. These are depicted in Figure 1. close to each other. That is, if we supposeas promoter

In order to compute the interaction between DNA andynq g, as the set of residues that interact with the promoter,

RNA polymerase, we have chosen the cross-correlatiofen they are compatible with each other, themilar(j)
as the means. Cross-correlation between the two can Rgj,es will also be zero.

computed by converting both DNA and RNA polymerase

sequences into numerical sequences. In this method the

amino acid residues and nucleotides are encoded into ndiable 3: Spacing between -35 and -10 binding sites (SP35)
merical format using EIIP values [27], [28]. EIIP encodingand -10 and TSS (SP10) for different j values.

is chosen since it can be used to encode both amino acids i SP35(bp) SP10 (bp)
and nucleotides. Table 1 lists the EIIP values of the relevan 1 15 3
amino acids and nucleotides. 2 16 3
7 2 3
Table 1: EIIP values for amino acids [27] and nucleotides 8 15 4
[28]. _ _ 63 21 1
Amino acid ElIP Nucleotide ElIP
Tyrosine(Y) 0.0516 A 0.1260
g{l‘t’;‘;ﬁ’mz‘g’)‘b oo < P The values of the 63 combinations for various spacings
Threonine(T) ~ 0.0941 c 0.1340 between -35 and -10 regions and -10 and TSS can be treated
Arginine (R) 0.0959 as the compatibility between the sigma subunit and promoter

binding regions. Of the 63 combinations obtained from the

Another way of encoding using values provided by Man-above calculations, the highest score is considered teearri
del et al. [29]. Mandel et al. [29] have analyzed protein-dnait the spacers between binding sites. Fixing up the spacers,
complexes to extract all non-homologous pairs of amindinding sites can be identified.
acid-base pairs that are in close contact. A quantitative
measure of the likelihood of the interaction between eaci.1.2 Step2: Bi-gram feature extraction
pair of amino acid and base is computed. A score can be _ ) ) ) )
computed by summing up the individual measures of amino €9ions with high information content are selected,
acid-base pairs assuming additivity in their contribuion  SPecifically 17 positions around the -35 binding site and
binding. This score can be used a measure of the compe&-1 positions around the -10 binding site and 7 positions

ibility between the protein and its dna target. Table 2 Iistsf"lround th? trgnscnpuon_start site are extracted. A bl_rgra
these amino acid-base pair interaction values. iIs a combination of contiguous two letters. DNA consist of

four bases and therefore 16 bigrams (AA, AT, AG, AC,
TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, CC)

Table 2: Amino acid-base pair interaction values [29].  4a formed [6]. For each window 16 bigrams are computed.

G AT c In total 48 bi-gram features are obtained for all the three
pp -él-gs -g-g? 615316 63i933 windows. Two types of experiments are performed. One in
yr o -2 -2. . . ; P ; ; ;
Gn 009 116 031 -3.09 which the original _48 bigram features are given as input
Thr -3.46 -0.06 -0.06 -1.16 features to the multi-layer feed-forward (MLFF) perceptro
Arg 274 034 125 -393 The output of the neural network i& 0.5 if the given

sequence is predicted as a promoter. Second one in which the
In order to obtain the interaction between promoter andi-gram feature values for each of the windows are combined
residues in the sigma subunitimilar(j) defined in 1 is together into 16 bigram features. Simulations are donegusin
computed. SNNS package [30].



3.2 Training and Testing features compared to 48 features. This fact is evident from
Bi-gram features extracted from the windows around thdigures 3 and 4. In these figures X-axis has a moving window

binding sites and TSS are used as input features for tH& Siz€ 80 bp and y-axis shows the output of the neural
MLFF neural network. We have carried out 5-fold cross-"€twork for each window. Only output greater than 0.5 is

validation procedure in which the total data set is dividedconsidered as a promoter. It is not only an output greater
into 5 parts. In each fold, 1 part will form the test set Wh”ethan 0.5 that is essential we also need to have a stretch of

the remaining four will be used for training. Precision (Pr) continuous ones over a threshold value of 20-25 is required

Sensitivity (Sn) and Specificity (Sp) are used as measures {f @nnotate the stretch of base pairs as as a promoter. In
classification performance. Specificity is the proportidn o thiS context, we could identify a clear stretch of positives

the negative test sequences that are correctly classified ai¥ith 16 features compared to 48 features. These results
sensitivity is the proportion of the positive test sequance@'® comparable to what was obtained using n-grams [6].
that are correctly classified. Precision is the proportion o'Ve have also carried out one more experiment wherein the

the correctly classified sequences of the entire test data sgucleotides in the windows are straightaway used as input
features to the neural network after converting them into

3.3 Extension to Whole Genome Promoter Pre- numerical values using EIIP codes. This experiment results
diction are not as good as the results obtained with bi-grams.

The real test for any promoter recognition is it's ability to o o ,
identify promoters in a whole genome. Towards this end, wgaPle 4: Classification results usingimilar(j)features.
have usedsectionl and section3 of E.coli. Total genome S€tA: Bi-grams from each window used separately and SetB:
of E.coli is divided into 400 sections. Out of these section&i-9rams from each window combined together.
two sectionssectionl and section3 are chosen to extend Features Number Pr S Sn
the promoter recognition algorithm. These are chosen for SetA 48 79.15 86.92 6276
the purpose of comparison with the results obtained using Setd 16 7647 8653 5514
n-gram features [6]. A sliding window of 80 bp is used
to segment these sections into segments of size 80 bp. We
consider a sliding window of length 80 extracting segments ! ‘ ‘ ‘ ‘ ‘
from the start of the DNA sequence considered, that is, 1- ,
80, 2-81, 3—-82 and so on. These are represented as the bi-
gram feature vectors which are used by the neural network °¢
classifier. Each of the segments gets classified as promoter;
(P) or non-promoter (NP). If a segment — (m + 79) is
classified as a promoter, then the nucleotidés annotated
as P and if it is classified as non-promoter then is 05
annotated a&/ P. This process of annotation is continued for
the entire sequence to get a sequenc&sfand NP’s. We  Figure 3:section1 of E.coli tested with 48 bi-gram features.
propose that if a contiguous segment of length more than g-axis has a moving window of size 80 bp and y-axis shows
certain threshold has alt’s then we annotate that region as the output of the neural network for each window.
promoter region otherwise as non-promoter region. For the
verification purpose we have considered thetionl and
section3 of E.coli [31]. It also denotes the set of promoters
present in these segments.

06
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4. Discussion 08

Table 4 shows the average of 5-fold cross validation oz
results for both 48 bigram features as well as 16 bigram
features extracted usingimilar(j) (refer to equation 1).
Sensitivity and specificity using 48 bigram-features aosel 05
to what was obtained using bi-grams for the entire pro-
moter [6] than the ones obtained with 16-bigram featuresFigure 4:sectionl of E.coli tested with 16 bi-gram features.
But sectionl and section3 results using 48 features and X-axis has a moving window of size 80 bp and y-axis shows
16 features extracted from the windows usisignilar(j)  the output of the neural network for each window.
values present a different scenario. False-positived, itha
non-promoters identified as promoters are much less with 16 As in the case of n-grams extracted from the whole pro-

0 1000 2000 3000 4000 5000



moter, we have obtained Satisfactory results with the featu Table 5: Frequency of occurrence of bases in -35 b|nd|ng
extracted from the interaction between promoter and ¢ertaisjte for promoters using Mandel et al. interaction values

residues of sigma subunit. Through this interaction, weshav 35 34 33 32 31 30
extracted the binding sites and the windows around the
binding sites and TSS. Whole genome promoter prediction
results using 16 bi-gram features in fact assures that the
binding sites that are extracted are of relevance since we
obtain similar results as in the case of bi-grams extracted
from the whole promoter. Results obtained with 16 featuresaple 6: Frequency of occurrence of bases in -35 binding
compared to 48 features indicates that a global signal isjte for promoters using EIIP encoding forinteraction
much more powerful than a local signal. 35 34 33 32 31 30

Annotation of samesectionl and section3 of E.coli
obtained with features extracted from interactions derlve
Mandel et al. is done and the results of the annotation for
sectionl is shown in Figure 5. Similar results are predicted
by these features also. But, the stretch of promoters istabou

15-25 only. None of these results are predicting as well as
3-grams [6]. identification of the promoters. This was verified through

experiments where the binding sites were incorrectly iden-
1 , , , . tified and the resulting classification accuracy of pronster
was down to 45%. Only in the case of correct identification,
we get to identify binding sites correctly hence can identif
08 ] promoters much better.

0.503 0.282 0.298 0.230 0.018 0.242
0.381 0.285 0.367 0.430 0.228 0.317
0.113 0.175 0.089 0.094 0.753 0.145

0.0014 0.257 0.243 0.245 0.000 0.296

o>

0.051 0.291 0.260 0.341 0.052 0.294
0.412 0375 0.288 0.323 0.374 0.269
0.000 0.224 0.309 0.224 0.000 0.291
0.537 0.109 0.142 0.112 0.574 0.145

o>
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: 5. Conclusions
Promoter recognition is attempted using the interactions
05 between RNA polymerase and promoter. Experiments with
’ 1000 200 w0 e 00 similarity and cross correlation between RNA polymerase
Figure 5:sectionl of E.coli tested with 16 bi-gram features and promoter are tried. Experiments used to obtain sirtylari
extracted from interactions proposed by Mandel et al. X-axiand cross-correlation using EIIP values show that a global
has a moving window of size 80 bp and y-axis shows thesignal (Figure 4) is rather more effective than a local signa
output of the neural network for each window. (Figure 3). Eventhough the test data results indicate aghnigh
sensitivity value, generalization capability of the 16ttras
Moreover, frequency analysis of the binding sites exdis better than 48 features. The results also point to the fact
tracted using EIIP and Mandel values, indicates a markethat similarity measure between the signal is more efficient
bias towards certain bases in positions -35 and -31 and al$o promoter recognition. Interactions derived using amino
-13, -12, -11 and -10. Table 5 and Table 6 represent thacid-base pairs are not as powerful as the signal derived
frequency of occurrence each base pair at each position inusing EIIP values. The analysis of frequency distribution
35 binding site. The consensus at the -35 binding site off bases in the binding sites shows that EIIP values have
each position using EIIP gives a closer similarity to thea distribution closer to the predicted consensus sequence
general consensus TTGACA observed in literature. Sinceompared to amino acid-base pair interactions. Additivity
EIIP values for T and C are close, that could explain somef interactions is assumed in these cases. Whether there
distribution between T and C at -35 position and -31. Inis a stable conformation possible, with a lower inetraction
case of interactions obtained through Mandel’s valueggsin value is to be investigated further. And also addition of
Glutamine favours A in comparison to the others, we couldnore interactions to the set will increase the accuracy much
observe, a bias towards A. So is Arginine at position -3Xfurther. A committee machine using these different feature
which favours G. can be designed to annotate a segment as a promoter or a
The annotation results of these sections of E.coli compameon-promoter based on voting. In addition the same sections
with that of results obtained using 3-grams in the earliemre used for annotation with GLIMMER and Genemark
work [6]. The distinct aspect of this work is the identificati  packages which annotate the coding regions in the given
of the binding sites through the interactions between RNADNA segment. Most of our promoters identified are occur-
polymerase and the binding sites of the promoter. If theing upstream of these coding regions giving credence to our
binding sites were not identified correctly, the resulting b annotation scheme.
grams around the windows would not lead to the correct Same arguments can be extended for eukaryotes in which
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lot of transcription binding factors (TBP) bind to a promote [13] Q. Ma, J.T.L.
In this case, the classification via an expectation maximization algorithmd aneural

before a RNA polymerase is summoned.

interaction between TBPs and promoter can be modeled
through the protein-promoter binding interactions and can

be use to identify the promoters.

The main aim of the work is to prove the efficacy of the

Wang, D. Shasha, C.H. Wu, “ DNA sequence

networks: a case study/EEE Transactions on Systems, Man and
Cybernetics, Part C: Applications and Reviews, Specialds®n
Knowledge Managemehivol. 31, pp. 468-475 , 2001.

[14] A. Pedersen, P. Baldi, Y. Chauvinb, S. Brunak, “ The &iyl of
eukaryotic promoter prediction - a review,Computers & Chemistry
,vol. 23, pp. 191-207 , 1999.

interaction between the RNA polymerase and the DNA in15] T. Matsuda, H. Motoda, T. Washio, “ Graph based inductimd its

identifying the promoters in a whole genome. Eventhough

applications,” Advanced Engineering Informaticsvol. 16, pp. 135-
143, 2002.

the n-gram features are being used, it is very importante m. Gribskov, R.R. Burgess, * Sigma factors from E. c@i, subtilis,

to correctly identify the binding site regions through the
interaction between DNA and RNA polymerase to get goo
accuracies. Hence, the main assumption that the intemacti

phase SPO1, and phage T4 are homologous proteiNsi£leic Acids

17] J.D. Helmann, M.J. Chamberlin, “ Structure and functaf bacterial
sigma factors,” Ann. Rev. Biochem.vol. 57, pp. 839-872 , 1988.

3 Res., vol. 14, pp. 6745-6763 , 1986.

between DNA and RNA polymerase is proven to be very18] J.A. Jaehing, “ Sigma factor relatives in eukaryotes3cience,

useful in promoter identification.
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